Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mayr, Felix

  • Google
  • 5
  • 22
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2023The Role of Alpha‐Methylbenzyl Ammonium Iodide to Reduce Defect Densities in Perovskite Devicescitations
  • 2023Polymerized Riboflavin and Anthraquinone Derivatives for Oxygen Reduction Reaction1citations
  • 2023Solar RRL / The Role of Alpha-Methylbenzyl Ammonium Iodide to Reduce Defect Densities in Perovskite Devicescitations
  • 2021Highly fluorescent thin films formation by water-enhanced colloidal perovskite nanoparticlescitations
  • 2020Optical Characterization of Organic and Perovskite Semiconductors by Photothermal Deflection Spectroscopy ; Optische Charakterisierung von organischen und Perowskit-basierten Halbleitern mittels photothermischer Ablenkungsspektroskopiecitations

Places of action

Chart of shared publication
Kaltenbrunner, Martin
2 / 11 shared
Lehner, Lukas
2 / 2 shared
Putz, Christoph
2 / 2 shared
Demchyshyn, Stepan
2 / 8 shared
Hailegnaw, Bekele
2 / 4 shared
Scharber, Markus Clark
3 / 8 shared
Gugujonovic, Katarina
2 / 2 shared
Wielend, Dominik
1 / 3 shared
Leeb, Elisabeth
2 / 2 shared
Neugebauer, Helmut
1 / 2 shared
Yumusak, Cigdem
1 / 1 shared
Richtar, Jan
1 / 1 shared
Schimanofsky, Corina
1 / 1 shared
Cobet, Munise
1 / 1 shared
Kerschbaumer, Angelina
1 / 1 shared
Kleinbruckner, Nadine
1 / 1 shared
Irimiavladu, Mihai
1 / 1 shared
Sariciftci, Niyazi Serdar
2 / 11 shared
Krajcovic, Jozef
1 / 3 shared
Scharber, Markus C.
1 / 2 shared
Brüggemann, Oliver
1 / 7 shared
Salinas, Yolanda
1 / 2 shared
Chart of publication period
2023
2021
2020

Co-Authors (by relevance)

  • Kaltenbrunner, Martin
  • Lehner, Lukas
  • Putz, Christoph
  • Demchyshyn, Stepan
  • Hailegnaw, Bekele
  • Scharber, Markus Clark
  • Gugujonovic, Katarina
  • Wielend, Dominik
  • Leeb, Elisabeth
  • Neugebauer, Helmut
  • Yumusak, Cigdem
  • Richtar, Jan
  • Schimanofsky, Corina
  • Cobet, Munise
  • Kerschbaumer, Angelina
  • Kleinbruckner, Nadine
  • Irimiavladu, Mihai
  • Sariciftci, Niyazi Serdar
  • Krajcovic, Jozef
  • Scharber, Markus C.
  • Brüggemann, Oliver
  • Salinas, Yolanda
OrganizationsLocationPeople

article

The Role of Alpha‐Methylbenzyl Ammonium Iodide to Reduce Defect Densities in Perovskite Devices

  • Kaltenbrunner, Martin
  • Lehner, Lukas
  • Putz, Christoph
  • Demchyshyn, Stepan
  • Hailegnaw, Bekele
  • Scharber, Markus Clark
  • Gugujonovic, Katarina
  • Mayr, Felix
Abstract

<jats:p>Hybrid organic–inorganic perovskite photovoltaic has achieved unmatched power conversion efficiency (PCE) improvement in the last decade. Nevertheless, nonradiative recombination of charge carriers due to bulk and interface defects reduces the open‐circuit voltage (<jats:italic>V</jats:italic> <jats:sub>oc</jats:sub>) and PCE of perovskite solar cells. Incorporating additives, process optimization, and interface engineering are among the effective approaches employed to reduce such issues. Herein, quasi‐2D p–<jats:italic>i</jats:italic>–n perovskite solar cells incorporating alpha‐methylbenzyl ammonium iodide (MBAI) cation with outstanding photovoltaic performance and stability are developed. MBAI incorporation results in films with excellent optical and electrical properties, leading to higher <jats:italic>V</jats:italic> <jats:sub>OC</jats:sub> of ≈1.15 V, fill factor of above 77%, and stability of the device. A high open‐circuit voltage and fill factor and corrected power conversion efficiencies in the range of 15% are obtained for the prepared devices. The encapsulated solar cells show excellent operational stability under white light illumination in ambient air for &gt;500 h. Due to the simple and robust preparation process, the investigated inverted perovskite solar cell can easily be combined with other solution‐processed thin film solar cells to form multijunction devices and can easily be integrated into different lightweight and flexible products.</jats:p>

Topics
  • perovskite
  • thin film
  • defect
  • power conversion efficiency