Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Shochet, Ofer

  • Google
  • 1
  • 8
  • 12

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Thermal Stable High-Efficiency Copper Screen Printed Back Contact Solar Cells12citations

Places of action

Chart of shared publication
Mihailetchi, Valentin D.
1 / 5 shared
Rudolph, Dominik
1 / 5 shared
Chen, Ning
1 / 3 shared
Isabella, Olindo
1 / 18 shared
Peter, Christoph
1 / 2 shared
Rosen, Yitzchak
1 / 1 shared
Grouchko, Michael
1 / 1 shared
Zeman, Miro
1 / 21 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Mihailetchi, Valentin D.
  • Rudolph, Dominik
  • Chen, Ning
  • Isabella, Olindo
  • Peter, Christoph
  • Rosen, Yitzchak
  • Grouchko, Michael
  • Zeman, Miro
OrganizationsLocationPeople

article

Thermal Stable High-Efficiency Copper Screen Printed Back Contact Solar Cells

  • Mihailetchi, Valentin D.
  • Rudolph, Dominik
  • Chen, Ning
  • Shochet, Ofer
  • Isabella, Olindo
  • Peter, Christoph
  • Rosen, Yitzchak
  • Grouchko, Michael
  • Zeman, Miro
Abstract

<p>The high usage of silver in industrial solar cells may limit the growth of the solar industry. One solution is to replace Ag with copper. A screen printable Cu paste is used herein to metallize industrial interdigitated back contact (IBC) solar cells. A novel metallization structure is proposed for making solar cells. Cu paste is applied to replace the majority of the Ag used in IBC cells as busbars and fingers. Cu paste is evaluated for use as fingers, and solar cells are made to test conversion efficiency and reliability. The Cu paste achieves comparably low resistivity, and Cu paste printed cells demonstrate similar efficiency to Ag paste printed cells, with an average efficiency of 23%, and only 4.5 mg W<sup>−1</sup> of Ag usage. Also, the solar cells are stable and no Cu in-diffusion is observed under damp heat (85 °C, 85% relative humidity) and thermal stress (200 °C) for 1000 h, respectively. All processes used in this study can be carried out with industrial equipment. These findings reveal a new application for Cu pastes and point to a new direction for reducing Ag utilization and cost.</p>

Topics
  • impedance spectroscopy
  • silver
  • resistivity
  • copper