People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Moons, Ellen
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024Impact of photoinduced phase segregation in mixed-halide perovskite absorbers on their material and device stabilitycitations
- 2023Hexanary blends: a strategy towards thermally stable organic photovoltaicscitations
- 2022Intrinsic Organic Semiconductors as Hole Transport Layers in p–i–n Perovskite Solar Cellscitations
- 2021In Situ Optical Studies on Morphology Formation in Organic Photovoltaic Blendscitations
- 2021In Situ Optical Studies on Morphology Formation in Organic Photovoltaic Blendscitations
- 2021In Situ Optical Studies on Morphology Formation in Organic Photovoltaic Blendscitations
- 2019Photo-Oxidation Reveals H-Aggregates Hidden in Spin-Cast-Conjugated Polymer Films as Observed by Two-Dimensional Polarization Imagingcitations
- 2018Fullerene aggregation in thin films of polymer blends for solar cell applicationscitations
- 2018Engineering Two-Phase and Three-Phase Microstructures from Water-Based Dispersions of Nanoparticles for Eco-Friendly Polymer Solar Cell Applicationscitations
- 2018Engineering Two-Phase and Three-Phase Microstructures from Water-Based Dispersions of Nanoparticles for Eco-Friendly Polymer Solar Cell Applications
- 2015Vertical and lateral morphology effects on solar cell performance for a thiophene-quinoxaline copolymer : PC_{70}BM blendcitations
- 2012Polymer blends spin-cast into films with complementary elements for electronics and biotechnologycitations
Places of action
Organizations | Location | People |
---|
article
Intrinsic Organic Semiconductors as Hole Transport Layers in p–i–n Perovskite Solar Cells
Abstract
Thin polymeric and small-molecular-weight organic semiconductors are widely employed as hole transport layers (HTLs) in perovskite solar cells. To ensure ohmic contact with the electrodes, the use of doping or additional high work function (WF) interlayer is common. In some cases, however, intrinsic organic semiconductors can be used without any additive or buffer layers, although their thickness must be tuned to ensure selective and ohmic hole transport. Herein, the characteristics of thin HTLs in vacuum-deposited perovskite solar cells are studied, and it is found that only very thin (<5 nm) HTLs readily result inhigh-performing devices, as the HTL acts as a WF enhancer while still ensuring selective hole transfer, as suggested by ultraviolet photoemission spectroscopy and Kelvin probe measurements. For thicker films (>= 5 nm), a dynamic behavior for consecutive electrical measurements is observed, a phenomenon which is also common to other widely used HTLs. Finally, it is found that despite their glass transition temperature, small-molecule HTLs lead to thermally unstable solar cells, asopposed to polymeric materials. The origin of the degradation is still not clear, but might be related to chemical reactions/diffusion at the HTL/perovskite interface, in detriment of the device stability