Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Michalska, Monika

  • Google
  • 4
  • 34
  • 75

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2023Machine Learning Enhanced High‐Throughput Fabrication and Optimization of Quasi‐2D Ruddlesden–Popper Perovskite Solar Cells27citations
  • 2022One-pot SnO2 Nanoparticle Ink Synthesis and their Use in Printable Perovskite Solar Cells16citations
  • 2021Microfluidic Processing of Ligand-Engineered NiO Nanoparticles for Low-Temperature Hole-Transporting Layers in Perovskite Solar Cells15citations
  • 2017New synthesis route to decorate Li 4 Ti 5 O 12 grains with GO flakes17citations

Places of action

Chart of shared publication
Chesman, Anthony S. R.
1 / 4 shared
Fürer, Sebastian O.
1 / 3 shared
Christofferson, Andrew J.
1 / 4 shared
Winkler, David A.
1 / 4 shared
Alan, Tuncay
2 / 2 shared
Raga, Sonia Ruiz
1 / 1 shared
Evans, Caria
1 / 2 shared
Rietwyk, Kevin James
2 / 2 shared
Lu, Jianfeng
1 / 3 shared
Surmiak, Maciej Adam
2 / 2 shared
Russo, Salvy P.
1 / 6 shared
Mcmeekin, David P.
1 / 3 shared
Vak, Doojin
2 / 5 shared
Deng, Hao
2 / 4 shared
Bach, Udo
2 / 19 shared
Jasieniak, Jacek
1 / 7 shared
Li, Hanchen
2 / 2 shared
Senevirathna, Dimuthu
1 / 1 shared
Kim, Jueng-Eun
1 / 2 shared
Sharma, Manoj
1 / 2 shared
Peiris, T. A. Nirmal
2 / 3 shared
Chandrasekaran, Naresh
2 / 3 shared
Senevirathna, Dimuthu C.
1 / 1 shared
Lin, Xionfeng
1 / 1 shared
Zhang, Tian
1 / 6 shared
Li, Bin
1 / 5 shared
Jasieniak, Jacek J.
1 / 2 shared
Chantler, Paul
1 / 2 shared
Maasoumi, Fatemeh
1 / 1 shared
Krawczyńska, Agnieszka
1 / 15 shared
Roguska, Agata
1 / 9 shared
Ziółkowska, D.
1 / 1 shared
Andrzejczuk, Mariusz
1 / 13 shared
Sikora, Andrzej
1 / 5 shared
Chart of publication period
2023
2022
2021
2017

Co-Authors (by relevance)

  • Chesman, Anthony S. R.
  • Fürer, Sebastian O.
  • Christofferson, Andrew J.
  • Winkler, David A.
  • Alan, Tuncay
  • Raga, Sonia Ruiz
  • Evans, Caria
  • Rietwyk, Kevin James
  • Lu, Jianfeng
  • Surmiak, Maciej Adam
  • Russo, Salvy P.
  • Mcmeekin, David P.
  • Vak, Doojin
  • Deng, Hao
  • Bach, Udo
  • Jasieniak, Jacek
  • Li, Hanchen
  • Senevirathna, Dimuthu
  • Kim, Jueng-Eun
  • Sharma, Manoj
  • Peiris, T. A. Nirmal
  • Chandrasekaran, Naresh
  • Senevirathna, Dimuthu C.
  • Lin, Xionfeng
  • Zhang, Tian
  • Li, Bin
  • Jasieniak, Jacek J.
  • Chantler, Paul
  • Maasoumi, Fatemeh
  • Krawczyńska, Agnieszka
  • Roguska, Agata
  • Ziółkowska, D.
  • Andrzejczuk, Mariusz
  • Sikora, Andrzej
OrganizationsLocationPeople

article

Microfluidic Processing of Ligand-Engineered NiO Nanoparticles for Low-Temperature Hole-Transporting Layers in Perovskite Solar Cells

  • Senevirathna, Dimuthu C.
  • Michalska, Monika
  • Lin, Xionfeng
  • Zhang, Tian
  • Li, Bin
  • Chandrasekaran, Naresh
  • Jasieniak, Jacek J.
  • Alan, Tuncay
  • Li, Hanchen
  • Rietwyk, Kevin James
  • Surmiak, Maciej Adam
  • Chantler, Paul
  • Peiris, T. A. Nirmal
  • Deng, Hao
  • Maasoumi, Fatemeh
  • Bach, Udo
Abstract

Nickel oxide (NiO) is used as a hole-transporting layer (HTL) in perovskite solar cells (PSCs) because of its high optical transmittance, intrinsic p-type doping, and suitable valence band energy level. However, fabricating high-quality NiO films typically requires high-temperature annealing, which limits their applicability for low-temperature, printable PSCs. Herein, the need for such postprocessing steps is circumvented by coupling 4-hydroxybenzoic acid (HBA) or trimethyloxonium tetrafluoroborate (Me3OBF4) ligand-modified NiO nanoparticles (NPs) with a Tesla-valve microfluidic mixer to deposit high-quality NiO films at a temperature <150 °C. The NP dispersions and the resulting thin films are thoroughly characterized using a combination of optical, structural, thermal, chemical, and electrical methods. While the optical and structural properties of the ligand-exchanged NiO NPs remain comparable with those possessing the native long-chained aliphatic ligands, the ligand-modified NiO thin films exhibit dramatic reductions in surface energy and an increase in hole mobilities. These are correlated with concomitant and significant enhancements in performance and stability factors of PSCs when the ligand-modified NiO NPs are used as HTL layers within p−i−n device architectures.

Topics
  • nanoparticle
  • perovskite
  • impedance spectroscopy
  • dispersion
  • surface
  • nickel
  • thin film
  • annealing
  • surface energy