Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Toro, Lorena Perdigón

  • Google
  • 1
  • 14
  • 71

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Pathways toward 30% Efficient Single‐Junction Perovskite Solar Cells and the Role of Mobile Ions71citations

Places of action

Chart of shared publication
Diekmann, Jonas
1 / 6 shared
Corre, Vincent M. Le
1 / 4 shared
Neher, Dieter
1 / 64 shared
Deibel, Carsten
1 / 4 shared
Kirchartz, Thomas
1 / 20 shared
Ehrler, Bruno
1 / 22 shared
Peña-Camargo, Francisco
1 / 9 shared
Gutierrez-Partida, Emilio
1 / 12 shared
Futscher, Moritz H.
1 / 15 shared
Jaiser, Frank
1 / 7 shared
Reichert, Sebastian
1 / 2 shared
Unold, Thomas
1 / 42 shared
Caprioglio, Pietro
1 / 17 shared
Arvind, Malavika
1 / 4 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Diekmann, Jonas
  • Corre, Vincent M. Le
  • Neher, Dieter
  • Deibel, Carsten
  • Kirchartz, Thomas
  • Ehrler, Bruno
  • Peña-Camargo, Francisco
  • Gutierrez-Partida, Emilio
  • Futscher, Moritz H.
  • Jaiser, Frank
  • Reichert, Sebastian
  • Unold, Thomas
  • Caprioglio, Pietro
  • Arvind, Malavika
OrganizationsLocationPeople

article

Pathways toward 30% Efficient Single‐Junction Perovskite Solar Cells and the Role of Mobile Ions

  • Diekmann, Jonas
  • Corre, Vincent M. Le
  • Neher, Dieter
  • Deibel, Carsten
  • Kirchartz, Thomas
  • Ehrler, Bruno
  • Peña-Camargo, Francisco
  • Gutierrez-Partida, Emilio
  • Futscher, Moritz H.
  • Jaiser, Frank
  • Toro, Lorena Perdigón
  • Reichert, Sebastian
  • Unold, Thomas
  • Caprioglio, Pietro
  • Arvind, Malavika
Abstract

<jats:sec><jats:label /><jats:p>Perovskite semiconductors have demonstrated outstanding external luminescence quantum yields, enabling high power conversion efficiencies (PCEs). However, the precise conditions to advance to an efficiency regime above monocrystalline silicon cells are not well understood. Herein, a simulation model that describes efficient p–i–n‐type perovskite solar cells well and a range of different experiments is established. Then, important device and material parameters are studied and it is found that an efficiency regime of 30% can be unlocked by optimizing the built‐in voltage across the perovskite layer using either highly doped (10<jats:sup>19</jats:sup> cm<jats:sup>−3</jats:sup>) transport layers (TLs), doped interlayers or ultrathin self‐assembled monolayers. Importantly, only parameters that have been reported in recent literature are considered, that is, a bulk lifetime of 10 μs, interfacial recombination velocities of 10 cm s<jats:sup>−1</jats:sup>, a perovskite bandgap () of 1.5 eV, and an external quantum efficiency (EQE) of 95%. A maximum efficiency of 31% is predicted for a bandgap of 1.4 eV. Finally, it is demonstrated that the relatively high mobile ion density does not represent a significant barrier to reach this efficiency regime. The results of this study suggest continuous PCE improvements until perovskites may become the most efficient single‐junction solar cell technology in the near future.</jats:p></jats:sec>

Topics
  • density
  • perovskite
  • impedance spectroscopy
  • experiment
  • simulation
  • semiconductor
  • Silicon
  • interfacial
  • size-exclusion chromatography
  • luminescence