People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Werner, Florian
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2021Passivating Surface Defects and Reducing Interface Recombination in CuInS<sub>2</sub> Solar Cells by a Facile Solution Treatmentcitations
- 2020Oxidation as Key Mechanism for Efficient Interface Passivation in Cu (In,Ga)Se2 Thin-Film Solar Cells
- 2020Ultra-thin passivation layers in Cu(In,Ga)Se2 thin-film solar cells: full-area passivated front contacts and their impact on bulk doping
- 2011Comparison of the thermal stability of single Al2O3 layers and Al2O3/SiNx stacks for the surface passiviation of silicon
Places of action
Organizations | Location | People |
---|
article
Passivating Surface Defects and Reducing Interface Recombination in CuInS<sub>2</sub> Solar Cells by a Facile Solution Treatment
Abstract
<jats:sec><jats:label /><jats:p>Interface recombination at the absorber surface impedes the efficiency of a solar cell with an otherwise excellent absorber. The internal voltage or quasi‐Fermi‐level splitting (qFLs) measures the quality of the absorber. Interface recombination reduces the open‐circuit voltage (<jats:italic>V</jats:italic><jats:sub>OC</jats:sub>) with respect to the qFLs. A facile solution‐based sulfur postdeposition treatment (S‐PDT) is explored to passivate the interface of CuInS<jats:sub>2</jats:sub> grown under Cu‐rich conditions, which show excellent qFLs values, but much lower <jats:italic>V</jats:italic><jats:sub>OC</jats:sub>s. The absorbers are treated in S‐containing solutions at 80 °C. Absolute calibrated photoluminescence and current–voltage measurements demonstrate a reduction of the deficit between qFLs and <jats:italic>V</jats:italic><jats:sub>OC</jats:sub> by almost one‐third compared with the untreated device. Temperature dependence of the open‐circuit voltage shows increased activation energy for the dominant recombination path, indicating less interface recombination. In addition, capacitance transients reveal the presence of slow metastable defects in the untreated solar cell. The slow response is considerably reduced by the S‐PDT, suggesting passivation of these slow metastable defects. The results demonstrate the effectiveness of solution‐based S‐treatment in passivating defects, presenting a promising strategy to explore and reduce defect states near the interface of chalcogenide semiconductors.</jats:p></jats:sec>