People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zhuk, Siarhei
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2023Combinatorial reactive sputtering with Auger parameter analysis enables synthesis of wurtzite Zn 2 TaN 3citations
- 2022Theoretical aspects of sulfide and selenides: structure, point defects, and electronic structure modificationscitations
- 2021Tin oxide for optoelectronic, photovoltaic and energy storage devices: a reviewcitations
- 2021Tin oxide for optoelectronic, photovoltaic and energy storage devices: a reviewcitations
- 2021Synthesis and characterization of the ternary nitride semiconductor Zn 2 VN 3 : theoretical prediction, combinatorial screening, and epitaxial stabilizationcitations
- 2020Solution Processed Pure Sulfide CZCTS Solar Cells with Efficiency 10.8% using Ultra-Thin CuO Intermediate Layercitations
- 2020Solution Processed Pure Sulfide CZCTS Solar Cells with Efficiency 10.8% using Ultra-Thin CuO Intermediate Layercitations
Places of action
Organizations | Location | People |
---|
article
Solution Processed Pure Sulfide CZCTS Solar Cells with Efficiency 10.8% using Ultra-Thin CuO Intermediate Layer
Abstract
In this work, we demonstrate that incorporating an ultra‐thin <i>p</i>‐type cupric oxide (CuO) enhances performance and stability of the solution processed Cu<sub>2</sub>(Zn<sub>0.6</sub>Cd<sub>0.4</sub>)SnS<sub>4</sub> (CZCTS)/CdS thin film solar cells. In sol‐gel CZCTS/CdS thin film solar cells, nanoscale CuO films (4 – 32 nm) were deposited on top of molybdenum (Mo) by magnetron sputtering and this was used as an intermediate layer (IL). The CuO IL thickness has a significant effect on the short‐circuit current density (JSC) in CZCTS/CdS solar cell devices. As a result, a maximum power conversion efficiency (PCE) of 10.77% has been measured for the optimized device with 4 nm CuO compared with 10.03% for the reference device without CuO layer. Furthermore, stability of the devices is enhanced significantly by incorporating CuO IL. The present work demonstrates that through proper design of the CuO intermediate layer thickness, both back interface quality and optical property of the CZCTS absorber can be tuned to enhance the device performance.