People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Dey, Dr. Avishek
University College London
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2021Tin oxide for optoelectronic, photovoltaic and energy storage devices: a reviewcitations
- 2021Removal and Degradation of Mixed Dye Pollutants by Integrated Adsorption-Photocatalysis Technique Using 2-D MoS<sub>2</sub>/TiO<sub>2</sub> Nanocompositecitations
- 2020Solution Processed Pure Sulfide CZCTS Solar Cells with Efficiency 10.8% using Ultra-Thin CuO Intermediate Layercitations
- 2019Continuous Hydrothermal Synthesis of Metal Germanates (M<sub>2</sub>GeO<sub>4</sub> ; M = Co, Mn, Zn) for High Capacity Negative Electrodes in Li‐ion Batteriescitations
- 2019Effects of Precursor Concentration in Solvent and Nanomaterials Room Temperature Aging on the Growth Morphology and Surface Characteristics of Ni–NiO Nanocatalysts Produced by Dendrites Combustion during SCScitations
- 2017Tuning the properties of a black TiO<sub>2</sub>-Ag visible light photocatalyst produced by rapid one-pot chemical reductioncitations
Places of action
Organizations | Location | People |
---|
article
Solution Processed Pure Sulfide CZCTS Solar Cells with Efficiency 10.8% using Ultra-Thin CuO Intermediate Layer
Abstract
In this work, we demonstrate that incorporating an ultra‐thin <i>p</i>‐type cupric oxide (CuO) enhances performance and stability of the solution processed Cu<sub>2</sub>(Zn<sub>0.6</sub>Cd<sub>0.4</sub>)SnS<sub>4</sub> (CZCTS)/CdS thin film solar cells. In sol‐gel CZCTS/CdS thin film solar cells, nanoscale CuO films (4 – 32 nm) were deposited on top of molybdenum (Mo) by magnetron sputtering and this was used as an intermediate layer (IL). The CuO IL thickness has a significant effect on the short‐circuit current density (JSC) in CZCTS/CdS solar cell devices. As a result, a maximum power conversion efficiency (PCE) of 10.77% has been measured for the optimized device with 4 nm CuO compared with 10.03% for the reference device without CuO layer. Furthermore, stability of the devices is enhanced significantly by incorporating CuO IL. The present work demonstrates that through proper design of the CuO intermediate layer thickness, both back interface quality and optical property of the CZCTS absorber can be tuned to enhance the device performance.