People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lehmann, Sebastian
Lund University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (28/28 displayed)
- 2024Microheater Controlled Crystal Phase Engineering of Nanowires Using In Situ Transmission Electron Microscopycitations
- 2024Microheater Controlled Crystal Phase Engineering of Nanowires Using In Situ Transmission Electron Microscopycitations
- 2024SnS2 Thin Film with In Situ and Controllable Sb Doping via Atomic Layer Deposition for Optoelectronic Applicationscitations
- 2024Low-Temperature ALD of SbOx/Sb2Te3 Multilayers with Boosted Thermoelectric Performancecitations
- 2023Three-Dimensional Integration of InAs Nanowires by Template-Assisted Selective Epitaxy on Tungstencitations
- 2022Low-Temperature Atomic Layer Deposition of High-k SbOx for Thin Film Transistorscitations
- 2022Encapsulation of locally welded silver nanowire with water-free ALD-SbOx for flexible thin-film transistors
- 2022Aero-TiO2 Prepared on the Basis of Networks of ZnO Tetrapods
- 2022The Role of Al2O3 ALD Coating on Sn-Based Intermetallic Anodes for Rate Capability and Long-Term Cycling in Lithium-Ion Batteriescitations
- 2021Current State-of-the-Art in the Interface/Surface Modification of Thermoelectric Materials
- 2021Vapor-solid-solid growth dynamics in GaAs nanowirescitations
- 2020Non-resonant Raman scattering of wurtzite GaAs and InP nanowirescitations
- 2018Using Ultrathin Parylene Films as an Organic Gate Insulator in Nanowire Field-Effect Transistorscitations
- 2018Spatial Control of Multiphoton Electron Excitations in InAs Nanowires by Varying Crystal Phase and Light Polarizationcitations
- 2018Atomic-resolution spectrum imaging of semiconductor nanowirescitations
- 2017Micro-Raman spectroscopy for the detection of stacking fault density in InAs and GaAs nanowirescitations
- 2017Characterization of individual stacking faults in a wurtzite GaAs nanowire by nanobeam X-ray diffractioncitations
- 2017Thermodynamic stability of gold-assisted InAs nanowire growthcitations
- 2017Crystal Structure Induced Preferential Surface Alloying of Sb on Wurtzite/Zinc Blende GaAs Nanowirescitations
- 2017Characterization of individual stacking faults in a wurtzite GaAs nanowire by nanobeam X-ray diffractioncitations
- 2016Can antimonide-based nanowires form wurtzite crystal structure?citations
- 2015Phase Transformation in Radially Merged Wurtzite GaAs Nanowires.citations
- 2012High crystal quality wurtzite-zinc blende heterostructures in metal-organic vapor phase epitaxy-grown GaAs nanowirescitations
- 2012High crystal quality wurtzite-zinc blende heterostructures in metal-organic vapor phase epitaxy-grown GaAs nanowirescitations
- 2011Chalcopyrite Semiconductors for Quantum Well Solar Cellscitations
- 2011Parameter space mapping of InAs nanowire crystal structurecitations
- 2010Optoelectronic evaluation of the nanostructuring approach to chalcopyrite-based intermediate band materialscitations
- 2009Structural Properties of Chalcopyrite-related 1:3:5 Copper-poor Compounds and their Influence on Thin-film Devicescitations
Places of action
Organizations | Location | People |
---|
article
Microheater Controlled Crystal Phase Engineering of Nanowires Using In Situ Transmission Electron Microscopy
Abstract
<jats:title>Abstract</jats:title><jats:p>Crystal Phase Quantum Dots (CPQDs) offer promising properties for quantum communication. How CPQDs can be formed in Au‐catalyzed GaAs nanowires using different precursor flows and temperatures by in situ environmental transmission electron microscopy (ETEM) experiments is studied. A III‐V gas supply system controls the precursor flow and custom‐built micro electro‐mechanical system (MEMS) chips with monocrystalline Si‐cantilevers are used for temperature control, forming a micrometer‐scale metal–organic vapor phase epitaxy (µMOVPE) system. The preferentially formed crystal phases are mapped at different precursor flows and temperatures to determine optimal growth parameters for either crystal phase. To control the position and length of CPQDs, the time scale for crystal phase change is investigated. The micrometer size of the cantilevers allows temperature shifts of more than 100 °C within 0.1 s at the nanowire growth temperature, which can be much faster than the growth time for a single lattice layer. For controlling the crystal phase, the temperature change is found to be superior to precursor flow, which takes tens of seconds for the crystal phase formation to react. This µMOVPE approach may ultimately provide faster temperature control than bulk MOVPE systems and hence enable engineering sequences of CPQDs with quantum dot lengths and positions defined with atomic precision.</jats:p>