People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Von Den Driesch, Nils
Forschungszentrum Jülich
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2024Full Picture of Lattice Deformation in a Ge<sub>1 − x</sub>Sn<sub>x</sub> Micro‐Disk by 5D X‐ray Diffraction Microscopycitations
- 2024Full Picture of Lattice Deformation in a Ge 1-x Sn x Micro‐Disk by 5D X‐ray Diffraction Microscopycitations
- 2024The Lattice Strain Distribution in GexSn1-x Micro-Disks Investigated at the Sub 100-nm Scale
- 2020Phase-Pure Wurtzite GaAs Nanowires Grown by Self-Catalyzed Selective Area Molecular Beam Epitaxy for Advanced Laser Devices and Quantum Diskscitations
- 2020(Invited) Tensile Strain Engineering and Defects Management in GeSn Laser Cavitiescitations
- 2018Advanced GeSn/SiGeSn Group IV Heterostructure Laserscitations
- 2018Advanced GeSn/SiGeSn Group IV Heterostructure Laserscitations
- 2017Schottky barrier tuning via dopant segregation in NiGeSn-GeSn contactscitations
Places of action
Organizations | Location | People |
---|
article
Full Picture of Lattice Deformation in a Ge<sub>1 − x</sub>Sn<sub>x</sub> Micro‐Disk by 5D X‐ray Diffraction Microscopy
Abstract
<jats:title>Abstract</jats:title><jats:p>Lattice strain in crystals can be exploited to effectively tune their physical properties. In microscopic structures, experimental access to the full strain tensor with spatial resolution at the (sub‐)micrometer scale is at the same time very interesting and challenging. In this work, how scanning X‐ray diffraction microscopy, an emerging model‐free method based on synchrotron radiation, can shed light on the complex, anisotropic deformation landscape within three dimensional (3D) microstructures is shown. This technique allows the reconstruction of all lattice parameters within any type of crystal with submicron spatial resolution and requires no sample preparation. Consequently, the local state of deformation can be fully quantified. Exploiting this capability, all components of the strain tensor in a suspended, strained Ge<jats:sub>1 − x</jats:sub>Sn<jats:sub>x</jats:sub> /Ge microdisk are mapped. Subtle elastic deformations are unambiguously correlated with structural defects, 3D microstructure geometry, and chemical variations, as verified by comparison with complementary electron microscopy and finite element simulations. The methodology described here is applicable to a wide range of fields, from bioengineering to metallurgy and semiconductor research. </jats:p>