People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Montalenti, Francesco
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2024Full Picture of Lattice Deformation in a Ge<sub>1 − x</sub>Sn<sub>x</sub> Micro‐Disk by 5D X‐ray Diffraction Microscopycitations
- 2024Polytypic quantum wells in Si and Ge: impact of 2D hexagonal inclusions on electronic band structurecitations
- 2024Extreme time extrapolation capabilities and thermodynamic consistency of physics-inspired Neural Networks for the 3D microstructure evolution of materials
- 2024Full Picture of Lattice Deformation in a Ge 1-x Sn x Micro‐Disk by 5D X‐ray Diffraction Microscopycitations
- 2024The Lattice Strain Distribution in GexSn1-x Micro-Disks Investigated at the Sub 100-nm Scale
- 2022Stress-Induced Acceleration and Ordering in Solid-State Dewettingcitations
- 2020Self-assembly of nanovoids in Si microcrystals epitaxially grown on deeply patterned substratescitations
- 2020Molecular dynamics simulations of extended defects and their evolution in 3C-SiC by different potentialscitations
- 2019Structure and Stability of Partial Dislocation Complexes in 3C-SiC by Molecular Dynamics Simulationscitations
- 2017Strain Engineering in Highly Mismatched SiGe/Si Heterostructurescitations
- 2017Phase-field simulations of faceted Ge/Si-crystal arrays, merging into a suspended filmcitations
- 2017Strain engineering in highly mismatched SiGe/Si heterostructurescitations
- 2016Temperature-controlled coalescence during the growth of Ge crystals on deeply patterned Si substratescitations
- 2016Elastic and Plastic Stress Relaxation in Highly Mismatched SiGe/Si Crystalscitations
- 2016Elastic and plastic stress relaxation in highly mismatched SiGe/Si crystalscitations
- 2016From plastic to elastic stress relaxation in highly mismatched SiGe/Si heterostructurescitations
- 2016From plastic to elastic stress relaxation in highly mismatched SiGe/Si heterostructurescitations
- 2015Engineered coalescence by annealing 3D Ge microstructures into high-quality suspended layers on Sicitations
- 2015Local uniaxial tensile strain in germanium of up to 4% induced by SiGe epitaxial nanostructurescitations
- 2014Straining Ge bulk and nanomembranes for optoelectronic applications: a systematic numerical analysiscitations
Places of action
Organizations | Location | People |
---|
article
Full Picture of Lattice Deformation in a Ge<sub>1 − x</sub>Sn<sub>x</sub> Micro‐Disk by 5D X‐ray Diffraction Microscopy
Abstract
<jats:title>Abstract</jats:title><jats:p>Lattice strain in crystals can be exploited to effectively tune their physical properties. In microscopic structures, experimental access to the full strain tensor with spatial resolution at the (sub‐)micrometer scale is at the same time very interesting and challenging. In this work, how scanning X‐ray diffraction microscopy, an emerging model‐free method based on synchrotron radiation, can shed light on the complex, anisotropic deformation landscape within three dimensional (3D) microstructures is shown. This technique allows the reconstruction of all lattice parameters within any type of crystal with submicron spatial resolution and requires no sample preparation. Consequently, the local state of deformation can be fully quantified. Exploiting this capability, all components of the strain tensor in a suspended, strained Ge<jats:sub>1 − x</jats:sub>Sn<jats:sub>x</jats:sub> /Ge microdisk are mapped. Subtle elastic deformations are unambiguously correlated with structural defects, 3D microstructure geometry, and chemical variations, as verified by comparison with complementary electron microscopy and finite element simulations. The methodology described here is applicable to a wide range of fields, from bioengineering to metallurgy and semiconductor research. </jats:p>