People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mariotti, Davide
University of Strathclyde
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Low temperature plasma‐assisted double anodic dissolution: a new approach for the synthesis of GdFeO3 perovskite nanoparticlescitations
- 2024Low temperature plasma‐assisted double anodic dissolution: a new approach for the synthesis of GdFeO 3 perovskite nanoparticlescitations
- 2024Stability in Photoluminescence and Photovoltaic Properties of Formamidinium Lead Iodide Quantum Dots
- 2023A Single‐Step Process to Produce Carbon Nanotube‐Zinc Compound Hybrid Materialscitations
- 2021Carrier extraction from metallic perovskite oxide nanoparticlescitations
- 2021Understanding plasma–ethanol non-equilibrium electrochemistry during the synthesis of metal oxide quantum dotscitations
- 2020Tuning the Bandgap Character of Quantum‐Confined Si–Sn Alloyed Nanocrystalscitations
- 2019Nanostructured perovskite solar cells
- 2018Zero-dimensional methylammonium iodo bismuthate solar cells and synergistic interactions with silicon nanocrystalscitations
- 2018Low-Loss and Tunable Localized Mid-Infrared Plasmons in Nanocrystals of Highly Degenerate InNcitations
- 2018Microplasma-assisted electrochemical synthesis of Co3O4 nanoparticles in absolute ethanol for energy applicationscitations
- 2017Zero-dimensional methylammonium iodo bismuthate solar cells and synergistic interactions with silicon nanocrystalscitations
- 2017Charge carrier localised in zero-dimensional (CH 3 NH 3 ) 3 Bi 2 1 9 clusterscitations
- 2017Charge carrier localised in zero-dimensional (CH3NH3)3Bi219 clusterscitations
- 2017Charge carrier localised in zero-dimensional (CH3NH3)3Bi219 clusterscitations
- 2017Charge carrier localised in zero-dimensional (CH3NH3)3Bi2I9 clusterscitations
- 2013Improved Optoelectronic Properties of Silicon Nanocrystals/Polymer Nanocomposites by Microplasma-Induced Liquid Chemistrycitations
Places of action
Organizations | Location | People |
---|
article
Low temperature plasma‐assisted double anodic dissolution: a new approach for the synthesis of GdFeO3 perovskite nanoparticles
Abstract
Orthorhombic perovskite GdFeO3 nanostructures are promising materials with multiferroic properties. In this study, a new low‐temperature plasma‐assisted approach is developed via dual anodic dissolution of solid metallic precursors for the preparation of perovskite GdFeO3 nanoparticles (NPs) that can be collected both as colloids as well as deposited as a thin film on a substrate. Two solid metallic foils of Gd and Fe are used as precursors, adding to the simplicity and sustainability of the method. The formation of the orthorhombic perovskite GdFeO3 phase is supported by high‐resolution transmission electron microscopy, X‐ray diffraction, X‐ray photoelectron spectroscopy, and Raman measurements, while a uniform elemental distribution of Gd, Fe, and O is confirmed by energy dispersive X‐ray spectroscopy, proving the successful preparation of ternary compound NPs. The magnetic properties of the NPs show zero remnant magnetization typical of antiferromagnetic materials, and saturation at high fields that can be caused by spin interaction between Gd and Fe magnetic sublattices. The formation mechanism of ternary compound NPs in this novel plasma‐assisted method is also discussed. This method is also modified to demonstrate the direct one‐step deposition of thin films, opening up opportunities for their future applications in the fabrication of magnetic memory devices and gas sensors.