Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mariotti, Davide

  • Google
  • 17
  • 58
  • 487

University of Strathclyde

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (17/17 displayed)

  • 2024Low temperature plasma‐assisted double anodic dissolution: a new approach for the synthesis of GdFeO3 perovskite nanoparticles2citations
  • 2024Low temperature plasma‐assisted double anodic dissolution: a new approach for the synthesis of GdFeO 3 perovskite nanoparticles2citations
  • 2024Stability in Photoluminescence and Photovoltaic Properties of Formamidinium Lead Iodide Quantum Dotscitations
  • 2023A Single‐Step Process to Produce Carbon Nanotube‐Zinc Compound Hybrid Materials1citations
  • 2021Carrier extraction from metallic perovskite oxide nanoparticles1citations
  • 2021Understanding plasma–ethanol non-equilibrium electrochemistry during the synthesis of metal oxide quantum dots11citations
  • 2020Tuning the Bandgap Character of Quantum‐Confined Si–Sn Alloyed Nanocrystals7citations
  • 2019Nanostructured perovskite solar cellscitations
  • 2018Zero-dimensional methylammonium iodo bismuthate solar cells and synergistic interactions with silicon nanocrystals29citations
  • 2018Low-Loss and Tunable Localized Mid-Infrared Plasmons in Nanocrystals of Highly Degenerate InN28citations
  • 2018Microplasma-assisted electrochemical synthesis of Co3O4 nanoparticles in absolute ethanol for energy applications41citations
  • 2017Zero-dimensional methylammonium iodo bismuthate solar cells and synergistic interactions with silicon nanocrystals29citations
  • 2017Charge carrier localised in zero-dimensional (CH 3 NH 3 ) 3 Bi 2 1 9 clusters75citations
  • 2017Charge carrier localised in zero-dimensional (CH3NH3)3Bi219 clusters75citations
  • 2017Charge carrier localised in zero-dimensional (CH3NH3)3Bi219 clusters75citations
  • 2017Charge carrier localised in zero-dimensional (CH3NH3)3Bi2I9 clusters75citations
  • 2013Improved Optoelectronic Properties of Silicon Nanocrystals/Polymer Nanocomposites by Microplasma-Induced Liquid Chemistry36citations

Places of action

Chart of shared publication
Arredondo-Arechavala, Miryam
1 / 19 shared
Tarasenko, Nikolai
2 / 3 shared
Padmanaban, Dilli Babu
4 / 4 shared
Karpinsky, Dmitry
2 / 6 shared
Tarasenka, Natalie
2 / 3 shared
Arredondo, Miryam
1 / 9 shared
Alessi, Bruno
2 / 2 shared
Matsui, Takuya
1 / 4 shared
Svrcek, Vladimir
7 / 7 shared
Mcglynn, Ruairi
2 / 2 shared
Brunet, Paul
1 / 2 shared
Bo, Zheng
1 / 2 shared
Ganguly, Abhijit
1 / 8 shared
Hussein, Hussein
1 / 1 shared
Chakrabarti, Supriya
1 / 2 shared
Maguire, Paul
11 / 22 shared
Connor, Paul Alexander
3 / 16 shared
Irvine, John Thomas Sirr
6 / 169 shared
Švrček, Vladimir
4 / 4 shared
Velusamy, Tamilselvan
2 / 2 shared
Ni, Chengsheng
9 / 14 shared
Macias-Montero, Manuel
2 / 3 shared
Mcdonald, Calum
8 / 8 shared
Byrne, Emily Letitia
1 / 1 shared
Swadźba-Kwaśny, Małgorzata
1 / 1 shared
Bürkle, Marius
1 / 1 shared
Lozach, Mickaël
3 / 3 shared
Irvine, John T. S.
2 / 44 shared
Connor, Paul A.
1 / 3 shared
Helmersson, Ulf
1 / 27 shared
Stehr, Jan Eric
1 / 7 shared
Askari, Sadegh
1 / 2 shared
Benedikt, Jan
1 / 8 shared
Keraudy, Julien
1 / 4 shared
Carolan, Darragh
5 / 5 shared
Xie, Deti
1 / 1 shared
Hui, Jianing
1 / 6 shared
Fang, Zeguo
1 / 1 shared
Ni, Jiu-Pai
1 / 1 shared
Rocks, Conor
1 / 1 shared
Payne, Julia Louise
3 / 11 shared
Jain, Gunisha
4 / 4 shared
Samuel, Ifor David William
3 / 69 shared
Hedley, Gordon James
3 / 7 shared
Edwards, Paul
4 / 22 shared
Martin, Robert
4 / 35 shared
Krishnan Jagadamma, Lethy
2 / 19 shared
Jagadamma, Lethy Krishnan
2 / 21 shared
Samuel, Ifor
1 / 3 shared
Payne, Julia
1 / 4 shared
Irvine, John
1 / 3 shared
Hedley, Gordon
1 / 3 shared
Cook, Steffan
1 / 1 shared
Blackley, Ross A.
1 / 2 shared
Cvelbar, Uros
1 / 11 shared
Zhou, Wuzong
1 / 29 shared
Kovac, Janez
1 / 5 shared
Mitra, Somak
1 / 4 shared
Chart of publication period
2024
2023
2021
2020
2019
2018
2017
2013

Co-Authors (by relevance)

  • Arredondo-Arechavala, Miryam
  • Tarasenko, Nikolai
  • Padmanaban, Dilli Babu
  • Karpinsky, Dmitry
  • Tarasenka, Natalie
  • Arredondo, Miryam
  • Alessi, Bruno
  • Matsui, Takuya
  • Svrcek, Vladimir
  • Mcglynn, Ruairi
  • Brunet, Paul
  • Bo, Zheng
  • Ganguly, Abhijit
  • Hussein, Hussein
  • Chakrabarti, Supriya
  • Maguire, Paul
  • Connor, Paul Alexander
  • Irvine, John Thomas Sirr
  • Švrček, Vladimir
  • Velusamy, Tamilselvan
  • Ni, Chengsheng
  • Macias-Montero, Manuel
  • Mcdonald, Calum
  • Byrne, Emily Letitia
  • Swadźba-Kwaśny, Małgorzata
  • Bürkle, Marius
  • Lozach, Mickaël
  • Irvine, John T. S.
  • Connor, Paul A.
  • Helmersson, Ulf
  • Stehr, Jan Eric
  • Askari, Sadegh
  • Benedikt, Jan
  • Keraudy, Julien
  • Carolan, Darragh
  • Xie, Deti
  • Hui, Jianing
  • Fang, Zeguo
  • Ni, Jiu-Pai
  • Rocks, Conor
  • Payne, Julia Louise
  • Jain, Gunisha
  • Samuel, Ifor David William
  • Hedley, Gordon James
  • Edwards, Paul
  • Martin, Robert
  • Krishnan Jagadamma, Lethy
  • Jagadamma, Lethy Krishnan
  • Samuel, Ifor
  • Payne, Julia
  • Irvine, John
  • Hedley, Gordon
  • Cook, Steffan
  • Blackley, Ross A.
  • Cvelbar, Uros
  • Zhou, Wuzong
  • Kovac, Janez
  • Mitra, Somak
OrganizationsLocationPeople

article

Low temperature plasma‐assisted double anodic dissolution: a new approach for the synthesis of GdFeO3 perovskite nanoparticles

  • Arredondo-Arechavala, Miryam
  • Tarasenko, Nikolai
  • Padmanaban, Dilli Babu
  • Karpinsky, Dmitry
  • Mariotti, Davide
  • Tarasenka, Natalie
Abstract

Orthorhombic perovskite GdFeO3 nanostructures are promising materials with multiferroic properties. In this study, a new low‐temperature plasma‐assisted approach is developed via dual anodic dissolution of solid metallic precursors for the preparation of perovskite GdFeO3 nanoparticles (NPs) that can be collected both as colloids as well as deposited as a thin film on a substrate. Two solid metallic foils of Gd and Fe are used as precursors, adding to the simplicity and sustainability of the method. The formation of the orthorhombic perovskite GdFeO3 phase is supported by high‐resolution transmission electron microscopy, X‐ray diffraction, X‐ray photoelectron spectroscopy, and Raman measurements, while a uniform elemental distribution of Gd, Fe, and O is confirmed by energy dispersive X‐ray spectroscopy, proving the successful preparation of ternary compound NPs. The magnetic properties of the NPs show zero remnant magnetization typical of antiferromagnetic materials, and saturation at high fields that can be caused by spin interaction between Gd and Fe magnetic sublattices. The formation mechanism of ternary compound NPs in this novel plasma‐assisted method is also discussed. This method is also modified to demonstrate the direct one‐step deposition of thin films, opening up opportunities for their future applications in the fabrication of magnetic memory devices and gas sensors.

Topics
  • nanoparticle
  • Deposition
  • perovskite
  • impedance spectroscopy
  • compound
  • phase
  • thin film
  • transmission electron microscopy
  • magnetization
  • photoelectron spectroscopy