People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mariotti, Davide
University of Strathclyde
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Low temperature plasma‐assisted double anodic dissolution: a new approach for the synthesis of GdFeO3 perovskite nanoparticlescitations
- 2024Low temperature plasma‐assisted double anodic dissolution: a new approach for the synthesis of GdFeO 3 perovskite nanoparticlescitations
- 2024Stability in Photoluminescence and Photovoltaic Properties of Formamidinium Lead Iodide Quantum Dots
- 2023A Single‐Step Process to Produce Carbon Nanotube‐Zinc Compound Hybrid Materialscitations
- 2021Carrier extraction from metallic perovskite oxide nanoparticlescitations
- 2021Understanding plasma–ethanol non-equilibrium electrochemistry during the synthesis of metal oxide quantum dotscitations
- 2020Tuning the Bandgap Character of Quantum‐Confined Si–Sn Alloyed Nanocrystalscitations
- 2019Nanostructured perovskite solar cells
- 2018Zero-dimensional methylammonium iodo bismuthate solar cells and synergistic interactions with silicon nanocrystalscitations
- 2018Low-Loss and Tunable Localized Mid-Infrared Plasmons in Nanocrystals of Highly Degenerate InNcitations
- 2018Microplasma-assisted electrochemical synthesis of Co3O4 nanoparticles in absolute ethanol for energy applicationscitations
- 2017Zero-dimensional methylammonium iodo bismuthate solar cells and synergistic interactions with silicon nanocrystalscitations
- 2017Charge carrier localised in zero-dimensional (CH 3 NH 3 ) 3 Bi 2 1 9 clusterscitations
- 2017Charge carrier localised in zero-dimensional (CH3NH3)3Bi219 clusterscitations
- 2017Charge carrier localised in zero-dimensional (CH3NH3)3Bi219 clusterscitations
- 2017Charge carrier localised in zero-dimensional (CH3NH3)3Bi2I9 clusterscitations
- 2013Improved Optoelectronic Properties of Silicon Nanocrystals/Polymer Nanocomposites by Microplasma-Induced Liquid Chemistrycitations
Places of action
Organizations | Location | People |
---|
article
A Single‐Step Process to Produce Carbon Nanotube‐Zinc Compound Hybrid Materials
Abstract
An atmospheric‐pressure plasma system is developed and is used to treat carbon nanotube assemblies, producing a hybrid carbon‐zinc structure. This system is integrated into a floating‐catalyst chemical vapor deposition furnace used for the synthesis of macroscopic assemblies of carbon nanotubes to allow for the in‐line, continuous, and single‐step production of nano‐composite materials. Material is deposited from a sacrificial zinc wire in the form of nanoparticles and can coat the surface of the individual carbon nanotubes as they form. Additionally, it is found that the deposited materials penetrate further into the carbon nanotube matrix than a comparable post‐synthesis deposition, improving the uniformity of the material through the thickness. Thus, a single‐step metal‐based coating and carbon nanotube synthesis process which can form the basis of production scale manufacturing of metal‐carbon nanotube composite materials with an atmospheric‐pressure plasma system are demonstrated.