People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Maguire, Paul
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2023A Single‐Step Process to Produce Carbon Nanotube‐Zinc Compound Hybrid Materialscitations
- 2021Carrier extraction from metallic perovskite oxide nanoparticlescitations
- 2021Understanding plasma–ethanol non-equilibrium electrochemistry during the synthesis of metal oxide quantum dotscitations
- 2020The analysis of dissolved inorganic carbon in liquid using a microfluidic conductivity sensor with membrane separation of CO2citations
- 2019Nanostructured perovskite solar cells
- 2018Zero-dimensional methylammonium iodo bismuthate solar cells and synergistic interactions with silicon nanocrystalscitations
- 2018Microplasma-assisted electrochemical synthesis of Co3O4 nanoparticles in absolute ethanol for energy applicationscitations
- 2017Zero-dimensional methylammonium iodo bismuthate solar cells and synergistic interactions with silicon nanocrystalscitations
- 2017Charge carrier localised in zero-dimensional (CH 3 NH 3 ) 3 Bi 2 1 9 clusterscitations
- 2017Charge carrier localised in zero-dimensional (CH3NH3)3Bi219 clusterscitations
- 2017Charge carrier localised in zero-dimensional (CH3NH3)3Bi219 clusterscitations
- 2017Charge carrier localised in zero-dimensional (CH3NH3)3Bi2I9 clusterscitations
- 2011Structural and surface energy analysis of nitrogenated ta-C filmscitations
- 2009Electrical and Raman spectroscopic studies of vertically aligned multi-walled carbon nanotubes.citations
- 2009Substrate effects on the microstructure of hydrogenated amorphous carbon filmscitations
- 2007Intrinsic mechanical properties of ultra-thin amorphous carbon layerscitations
- 2006Measuring the thickness of ultra-thin diamond-like carbon filmscitations
- 2004Platelet adhesion on silicon modified hydrogenated amorphous carbon films.citations
- 2001Electrical characteristics of nitrogen incorporated hydrogenated amorphous carboncitations
- 2001Intrinsic stress measured on ultra-thin amorphous carbon films deposited on AFM cantileverscitations
- 2001The insulating properties of a-C:H on silicon and metal substratescitations
- 2000Nitrogen doping of amorphous DLC films by rf plasma dissociated nitrogen atom surface bombardment in a vacuumcitations
Places of action
Organizations | Location | People |
---|
article
A Single‐Step Process to Produce Carbon Nanotube‐Zinc Compound Hybrid Materials
Abstract
An atmospheric‐pressure plasma system is developed and is used to treat carbon nanotube assemblies, producing a hybrid carbon‐zinc structure. This system is integrated into a floating‐catalyst chemical vapor deposition furnace used for the synthesis of macroscopic assemblies of carbon nanotubes to allow for the in‐line, continuous, and single‐step production of nano‐composite materials. Material is deposited from a sacrificial zinc wire in the form of nanoparticles and can coat the surface of the individual carbon nanotubes as they form. Additionally, it is found that the deposited materials penetrate further into the carbon nanotube matrix than a comparable post‐synthesis deposition, improving the uniformity of the material through the thickness. Thus, a single‐step metal‐based coating and carbon nanotube synthesis process which can form the basis of production scale manufacturing of metal‐carbon nanotube composite materials with an atmospheric‐pressure plasma system are demonstrated.