Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ferrara, Chiara

  • Google
  • 12
  • 54
  • 441

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (12/12 displayed)

  • 2024Host–Guest Interactions and Transport Mechanism in Poly(vinylidene fluoride)-Based Quasi-Solid Electrolytes for Lithium Metal Batteries5citations
  • 2024PVDF‐HFP Based, Quasi‐Solid Nanocomposite Electrolytes for Lithium Metal Batteries14citations
  • 2023Highly Reversible Ti/Sn Oxide Nanocomposite Electrodes for Lithium Ion Batteries Obtained by Oxidation of Ti<sub>3</sub>Al<sub>(1‐x)</sub>Sn<sub>x</sub>C<sub>2</sub> Phases10citations
  • 2023Unraveling the Electrochemical Mechanism in Tin Oxide/MXene Nanocomposites as Highly Reversible Negative Electrodes for Lithium‐Ion Batteries7citations
  • 2020Polymer-in-Ceramic Nanocomposite Solid Electrolyte for Lithium Metal Batteries Encompassing PEO-Grafted TiO<sub>2</sub> Nanocrystals33citations
  • 2020Polymer-in-Ceramic Nanocomposite Solid Electrolyte for Lithium Metal Batteries Encompassing PEO-Grafted TiO2 Nanocrystals33citations
  • 2015ZrO2/PEG hybrid nanocomposites synthesized via sol–gel: Characterization and evaluation of the magnetic properties21citations
  • 2014Mechanochemical Synthesis of Bumetanide–4-Aminobenzoic Acid Molecular Cocrystals: A Facile and Green Approach to Drug Optimization23citations
  • 2014Mechanism of Low-Temperature Protonic Conductivity in Bulk, High Density, Nanometric Titanium Oxide27citations
  • 2014Innovative high performing metal organic framework (MOF)-laden nanocomposite polymer electrolytes for all-solid-state lithium batteries206citations
  • 2013Polymorphism and magnetic properties of Li2MSiO4 (M = Fe, Mn) cathode materials31citations
  • 2013Polymorphism and magnetic properties of Li2MSiO4 (M = Fe, Mn) cathode material31citations

Places of action

Chart of shared publication
Ceribelli, Nicole
2 / 2 shared
Carena, Eleonora
2 / 2 shared
Ruffo, Riccardo
6 / 20 shared
Mustarelli, Piercarlo
10 / 22 shared
Giordano, Livia
2 / 18 shared
Di Liberto, Giovanni
1 / 4 shared
Mauri, Michele
4 / 11 shared
Lorenzi, Roberto
3 / 19 shared
Vallana, Nicholas
3 / 3 shared
Mezzomo, Lorenzo
2 / 4 shared
Liberto, Giovanni Di
1 / 3 shared
Mostoni, Silvia
1 / 9 shared
Ostroman, Irene
1 / 1 shared
Sheptyakov, Denis
1 / 20 shared
Marchionna, Stefano
2 / 4 shared
Gentile, Antonio
2 / 4 shared
Arnold, Stefanie
1 / 4 shared
Kübel, Christian
1 / 44 shared
Maibach, Julia
1 / 9 shared
Tang, Yushu
1 / 9 shared
Presser, Volker
1 / 23 shared
Gerbaldi, Claudio
2 / 59 shared
Colombo, Francesco
2 / 3 shared
Bonizzoni, Simone
2 / 2 shared
Falco, Marisa
2 / 13 shared
Simonutti, Roberto
2 / 15 shared
Bollino, F.
1 / 11 shared
Mozzati, Mc
1 / 5 shared
Catauro, M.
1 / 21 shared
Papale, F.
1 / 3 shared
Grande, Vincenzo
1 / 2 shared
Milanese, Chiara
1 / 50 shared
Maggi, Lauretta
1 / 5 shared
Girella, Alessandro
1 / 12 shared
Marini, Amedeo
1 / 17 shared
Berbenni, Vittorio
1 / 12 shared
Bruni, Giovanna
1 / 18 shared
Freccero, Mauro
1 / 1 shared
Maietta, Mariarosa
1 / 1 shared
Tredici, Ilenia Giuseppina
1 / 5 shared
Anselmi Tamburini, Umberto
1 / 24 shared
Maglia, Filippo
1 / 16 shared
Gerbaldi, C.
1 / 47 shared
Kulandainathan, Ma
1 / 1 shared
Stephan, Am
1 / 1 shared
Kumar, Rs
1 / 1 shared
Nair, Jr
1 / 2 shared
Bini, Marcella
2 / 19 shared
Capsoni, Doretta
2 / 13 shared
Pell, Andrew J.
2 / 6 shared
Pintacuda, Guido
2 / 8 shared
Mozzati, Maria Cristina
2 / 19 shared
Ferrari, Stefania
2 / 10 shared
Canton, Patrizia
2 / 30 shared
Chart of publication period
2024
2023
2020
2015
2014
2013

Co-Authors (by relevance)

  • Ceribelli, Nicole
  • Carena, Eleonora
  • Ruffo, Riccardo
  • Mustarelli, Piercarlo
  • Giordano, Livia
  • Di Liberto, Giovanni
  • Mauri, Michele
  • Lorenzi, Roberto
  • Vallana, Nicholas
  • Mezzomo, Lorenzo
  • Liberto, Giovanni Di
  • Mostoni, Silvia
  • Ostroman, Irene
  • Sheptyakov, Denis
  • Marchionna, Stefano
  • Gentile, Antonio
  • Arnold, Stefanie
  • Kübel, Christian
  • Maibach, Julia
  • Tang, Yushu
  • Presser, Volker
  • Gerbaldi, Claudio
  • Colombo, Francesco
  • Bonizzoni, Simone
  • Falco, Marisa
  • Simonutti, Roberto
  • Bollino, F.
  • Mozzati, Mc
  • Catauro, M.
  • Papale, F.
  • Grande, Vincenzo
  • Milanese, Chiara
  • Maggi, Lauretta
  • Girella, Alessandro
  • Marini, Amedeo
  • Berbenni, Vittorio
  • Bruni, Giovanna
  • Freccero, Mauro
  • Maietta, Mariarosa
  • Tredici, Ilenia Giuseppina
  • Anselmi Tamburini, Umberto
  • Maglia, Filippo
  • Gerbaldi, C.
  • Kulandainathan, Ma
  • Stephan, Am
  • Kumar, Rs
  • Nair, Jr
  • Bini, Marcella
  • Capsoni, Doretta
  • Pell, Andrew J.
  • Pintacuda, Guido
  • Mozzati, Maria Cristina
  • Ferrari, Stefania
  • Canton, Patrizia
OrganizationsLocationPeople

article

Highly Reversible Ti/Sn Oxide Nanocomposite Electrodes for Lithium Ion Batteries Obtained by Oxidation of Ti<sub>3</sub>Al<sub>(1‐x)</sub>Sn<sub>x</sub>C<sub>2</sub> Phases

  • Ruffo, Riccardo
  • Ostroman, Irene
  • Ferrara, Chiara
  • Lorenzi, Roberto
  • Sheptyakov, Denis
  • Marchionna, Stefano
  • Vallana, Nicholas
  • Gentile, Antonio
Abstract

<jats:title>Abstract</jats:title><jats:p>Among the materials for the negative electrodes in Li‐ion batteries, oxides capable of reacting with Li<jats:sup>+</jats:sup> via intercalation/conversion/alloying are extremely interesting due to their high specific capacities but suffer from poor mechanical stability. A new way to design nanocomposites based on the (Ti/Sn)O<jats:sub>2</jats:sub> system is the partial oxidation of the tin‐containing MAX phase of Ti<jats:sub>3</jats:sub>Al<jats:sub>(1‐x)</jats:sub>Sn<jats:sub>x</jats:sub>O<jats:sub>2</jats:sub> composition. Exploiting this strategy, this work develops composite electrodes of (Ti/Sn)O<jats:sub>2</jats:sub> and MAX phase capable of withstanding over 600 cycles in half cells with charge efficiencies higher than 99.5% and specific capacities comparable to those of graphite and higher than lithium titanate (Li<jats:sub>4</jats:sub>Ti<jats:sub>5</jats:sub>O<jats:sub>12</jats:sub>) or MXenes electrodes. These unprecedented electrochemical performances are also demonstrated at full cell level in the presence of a low cobalt content layered oxide and explained through an accurate chemical, morphological, and structural investigation which reveals the intimate contact between the MAX phase and the oxide particles. During the oxidation process, electroactive nanoparticles of TiO<jats:sub>2</jats:sub> and Ti<jats:sub>(1‐y)</jats:sub>Sn<jats:sub>y</jats:sub>O<jats:sub>2</jats:sub> nucleate on the surface of the unreacted MAX phase which therefore acts both as a conductive agent and as a buffer to preserve the mechanical integrity of the oxide during the lithiation and delithiation cycles.</jats:p>

Topics
  • nanoparticle
  • nanocomposite
  • impedance spectroscopy
  • surface
  • phase
  • layered
  • cobalt
  • Lithium
  • tin