Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Vallana, Nicholas

  • Google
  • 3
  • 16
  • 29

University of Milano-Bicocca

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024Host–Guest Interactions and Transport Mechanism in Poly(vinylidene fluoride)-Based Quasi-Solid Electrolytes for Lithium Metal Batteries5citations
  • 2024PVDF‐HFP Based, Quasi‐Solid Nanocomposite Electrolytes for Lithium Metal Batteries14citations
  • 2023Highly Reversible Ti/Sn Oxide Nanocomposite Electrodes for Lithium Ion Batteries Obtained by Oxidation of Ti<sub>3</sub>Al<sub>(1‐x)</sub>Sn<sub>x</sub>C<sub>2</sub> Phases10citations

Places of action

Chart of shared publication
Ceribelli, Nicole
2 / 2 shared
Carena, Eleonora
2 / 2 shared
Ruffo, Riccardo
3 / 20 shared
Mustarelli, Piercarlo
2 / 22 shared
Ferrara, Chiara
3 / 12 shared
Giordano, Livia
2 / 18 shared
Di Liberto, Giovanni
1 / 4 shared
Mauri, Michele
2 / 11 shared
Lorenzi, Roberto
3 / 19 shared
Mezzomo, Lorenzo
2 / 4 shared
Liberto, Giovanni Di
1 / 3 shared
Mostoni, Silvia
1 / 9 shared
Ostroman, Irene
1 / 1 shared
Sheptyakov, Denis
1 / 20 shared
Marchionna, Stefano
1 / 4 shared
Gentile, Antonio
1 / 4 shared
Chart of publication period
2024
2023

Co-Authors (by relevance)

  • Ceribelli, Nicole
  • Carena, Eleonora
  • Ruffo, Riccardo
  • Mustarelli, Piercarlo
  • Ferrara, Chiara
  • Giordano, Livia
  • Di Liberto, Giovanni
  • Mauri, Michele
  • Lorenzi, Roberto
  • Mezzomo, Lorenzo
  • Liberto, Giovanni Di
  • Mostoni, Silvia
  • Ostroman, Irene
  • Sheptyakov, Denis
  • Marchionna, Stefano
  • Gentile, Antonio
OrganizationsLocationPeople

article

Highly Reversible Ti/Sn Oxide Nanocomposite Electrodes for Lithium Ion Batteries Obtained by Oxidation of Ti<sub>3</sub>Al<sub>(1‐x)</sub>Sn<sub>x</sub>C<sub>2</sub> Phases

  • Ruffo, Riccardo
  • Ostroman, Irene
  • Ferrara, Chiara
  • Lorenzi, Roberto
  • Sheptyakov, Denis
  • Marchionna, Stefano
  • Vallana, Nicholas
  • Gentile, Antonio
Abstract

<jats:title>Abstract</jats:title><jats:p>Among the materials for the negative electrodes in Li‐ion batteries, oxides capable of reacting with Li<jats:sup>+</jats:sup> via intercalation/conversion/alloying are extremely interesting due to their high specific capacities but suffer from poor mechanical stability. A new way to design nanocomposites based on the (Ti/Sn)O<jats:sub>2</jats:sub> system is the partial oxidation of the tin‐containing MAX phase of Ti<jats:sub>3</jats:sub>Al<jats:sub>(1‐x)</jats:sub>Sn<jats:sub>x</jats:sub>O<jats:sub>2</jats:sub> composition. Exploiting this strategy, this work develops composite electrodes of (Ti/Sn)O<jats:sub>2</jats:sub> and MAX phase capable of withstanding over 600 cycles in half cells with charge efficiencies higher than 99.5% and specific capacities comparable to those of graphite and higher than lithium titanate (Li<jats:sub>4</jats:sub>Ti<jats:sub>5</jats:sub>O<jats:sub>12</jats:sub>) or MXenes electrodes. These unprecedented electrochemical performances are also demonstrated at full cell level in the presence of a low cobalt content layered oxide and explained through an accurate chemical, morphological, and structural investigation which reveals the intimate contact between the MAX phase and the oxide particles. During the oxidation process, electroactive nanoparticles of TiO<jats:sub>2</jats:sub> and Ti<jats:sub>(1‐y)</jats:sub>Sn<jats:sub>y</jats:sub>O<jats:sub>2</jats:sub> nucleate on the surface of the unreacted MAX phase which therefore acts both as a conductive agent and as a buffer to preserve the mechanical integrity of the oxide during the lithiation and delithiation cycles.</jats:p>

Topics
  • nanoparticle
  • nanocomposite
  • impedance spectroscopy
  • surface
  • phase
  • layered
  • cobalt
  • Lithium
  • tin