Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hrtoň, Martin

  • Google
  • 1
  • 9
  • 8

Brno University of Technology

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Plasmonic Metasurface Resonators to Enhance Terahertz Magnetic Fields for High‐Frequency Electron Paramagnetic Resonance8citations

Places of action

Chart of shared publication
Kern, Michal
1 / 4 shared
Van Slageren, Joris
1 / 8 shared
Bloos, Dominik
1 / 2 shared
Beneš, Adam
1 / 1 shared
Hentschel, Mario
1 / 3 shared
Šikola, Tomáš
1 / 9 shared
Křápek, Vlastimil
1 / 2 shared
Hillenbrand, Rainer
1 / 9 shared
Tesi, Lorenzo
1 / 3 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Kern, Michal
  • Van Slageren, Joris
  • Bloos, Dominik
  • Beneš, Adam
  • Hentschel, Mario
  • Šikola, Tomáš
  • Křápek, Vlastimil
  • Hillenbrand, Rainer
  • Tesi, Lorenzo
OrganizationsLocationPeople

article

Plasmonic Metasurface Resonators to Enhance Terahertz Magnetic Fields for High‐Frequency Electron Paramagnetic Resonance

  • Kern, Michal
  • Hrtoň, Martin
  • Van Slageren, Joris
  • Bloos, Dominik
  • Beneš, Adam
  • Hentschel, Mario
  • Šikola, Tomáš
  • Křápek, Vlastimil
  • Hillenbrand, Rainer
  • Tesi, Lorenzo
Abstract

<jats:title>Abstract</jats:title><jats:p>Nanoscale magnetic systems play a decisive role in areas ranging from biology to spintronics. Although, in principle, THz electron paramagnetic resonance (EPR) provides high‐resolution access to their properties, lack of sensitivity has precluded realizing this potential. To resolve this issue, the principle of plasmonic enhancement of electromagnetic fields that is used in electric dipole spectroscopies with great success is exploited, and a new type of resonators for the enhancement of THz magnetic fields in a microscopic volume is proposed. A resonator composed of an array of diabolo antennas with a back‐reflecting mirror is designed and fabricated. Simulations and THz EPR measurements demonstrate a 30‐fold signal increase for thin film samples. This enhancement factor increases to a theoretical value of 7500 for samples confined to the active region of the antennas. These findings open the door to the elucidation of fundamental processes in nanoscale samples, including junctions in spintronic devices or biological membranes.</jats:p>

Topics
  • impedance spectroscopy
  • thin film
  • simulation
  • electron spin resonance spectroscopy