People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jagadamma, Lethy Krishnan
University of St Andrews
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2024Metal oxide vs organic semiconductor charge extraction layers for halide perovskite indoor photovoltaics
- 2023Manipulation of structure and optoelectronic properties through bromine inclusion in a layered lead bromide perovskitecitations
- 2023Chlorine retention enables the indoor light harvesting of triple halide wide bandgap perovskitescitations
- 2023Lead-free perovskite-inspired semiconductors for indoor light-harvesting - the present and the futurecitations
- 2023Status report on emerging photovoltaicscitations
- 2022Crystalline grain engineered CsPbIBr2 films for indoor photovoltaicscitations
- 2022Solution-processable perylene diimide-based electron transport materials as non-fullerene alternatives for inverted perovskite solar cellscitations
- 2022Solution-processable perylene diimide-based electron transport materials as non-fullerene alternatives for inverted perovskite solar cellscitations
- 2022Hysteresis in hybrid perovskite indoor photovoltaicscitations
- 2021Organic photovoltaics for simultaneous energy harvesting and high-speed MIMO optical wireless communicationscitations
- 2021New thiophene-based conjugated macrocycles for optoelectronic applicationscitations
- 2021New thiophene-based conjugated macrocycles for optoelectronic applicationscitations
- 2019Efficient indoor pin hybrid perovskite solar cells using low temperature solution processed NiO as hole extraction layerscitations
- 2019Interface limited hole extraction from methylammonium lead iodide filmscitations
- 2017Charge carrier localised in zero-dimensional (CH3NH3)3Bi219 clusterscitations
- 2017Charge carrier localised in zero-dimensional (CH3NH3)3Bi2I9 clusterscitations
- 2017Novel 4,8-benzobisthiazole copolymers and their field-effect transistor and photovoltaic applicationscitations
- 2016Solution-processable MoO x nanocrystals enable highly efficient reflective and semitransparent polymer solar cellscitations
- 2016Solution-processable MoOx nanocrystals enable highly efficient reflective and semitransparent polymer solar cellscitations
- 2015Polymer solar cells with efficiency >10% enabled via a facile solution-processed Al-doped ZnO electron transporting layercitations
- 2015Polymer solar cells with efficiency >10% enabled via a facile solution-processed Al-doped ZnO electron transporting layercitations
Places of action
Organizations | Location | People |
---|
article
Metal oxide vs organic semiconductor charge extraction layers for halide perovskite indoor photovoltaics
Abstract
Halide perovskite indoor photovoltaics (PVs) are highly promising to autonomously power the billions of microelectronic sensors in the emerging and disruptive technology of the Internet of Things (IoT). However, how the wide range of different types of hole extraction layers (HELs) impacts the indoor light harvesting of perovskite solar cells is still elusive, which hinders the material selection and industrial‐scale fabrication of indoor perovskite photovoltaics. In the present study, new insights are provided regarding the judicial selection of HELs at the buried interface of halide perovskite indoor photovoltaics. This study unravels the detrimental and severe light‐soaking effect of metal oxide transport layer‐based PV devices under the indoor lighting effect for the first time, which then necessitates the interface passivation/engineering for their reliant performance. This is not a stringent criterion under 1 sun illumination. By systematically investigating the charge carrier dynamics and sequence of measurements from dark, light‐soaked, interlayer‐passivated device, the bulk and interface defects are decoupled and reveal the gradual defect passivation from shallow to deep level traps. Thus, the present study puts forward a useful design strategy to overcome the deleterious effect of metal oxide HELs and employ them in halide perovskite indoor PVs.