Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lanosky, Taylor D.

  • Google
  • 1
  • 4
  • 10

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Polarized Raman Microscopy to Image Microstructure Changes in Silicon Phthalocyanine Thin‐Films10citations

Places of action

Chart of shared publication
Mckillop, Sophia
1 / 2 shared
Ewenike, Raluchukwu
1 / 1 shared
King, Benjamin
1 / 2 shared
Cranston, Rosemary R.
1 / 2 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Mckillop, Sophia
  • Ewenike, Raluchukwu
  • King, Benjamin
  • Cranston, Rosemary R.
OrganizationsLocationPeople

article

Polarized Raman Microscopy to Image Microstructure Changes in Silicon Phthalocyanine Thin‐Films

  • Mckillop, Sophia
  • Ewenike, Raluchukwu
  • Lanosky, Taylor D.
  • King, Benjamin
  • Cranston, Rosemary R.
Abstract

<jats:p>The choice of deposition technique and post deposition treatment can significantly influence the performance of organic electronic devices by altering the complex relationship between film properties and charge transport. Herein, the influence of deposition method and post deposition thermal annealing on the thin‐film properties of an emerging semiconductor, bis(tri‐<jats:italic>n</jats:italic>‐propylsilyl oxide) SiPc ((3PS)<jats:sub>2</jats:sub>‐SiPc), is examined by polarized Raman microscopy. Comparing physical vapor deposition (PVD) and spin‐coating, the orientation of (3PS)<jats:sub>2</jats:sub>‐SiPc molecules in films is determined and further characterized by X‐ray diffraction to assess variations in microstructure and morphology due to thermal annealing. Despite differences in film formation, non‐annealed organic thin‐film transistors (OTFTs) fabricated by PVD and spin‐coating resulted in similar electron mobilities (<jats:italic>μ</jats:italic><jats:sub><jats:italic>e</jats:italic></jats:sub>) on the order of 10<jats:sup>−2</jats:sup> cm<jats:sup>2</jats:sup> V<jats:sup>−1</jats:sup> s<jats:sup>−1</jats:sup> and threshold voltages (<jats:italic>V</jats:italic><jats:sub><jats:italic>T</jats:italic></jats:sub>) of 10–20 V. Films fabricated by PVD annealed at 175 °C transition to a new polymorphic form with molecules aligned at a higher angle to the substrate and exhibiting reduced device performance. Conversely, spin‐coated films do not undergo any new polymorph formation or structural reorganization with thermal annealing. PVD fabricated films are thus more readily able to undergo transformations to structure and morphology with post deposition processing, while the microstructure of spin‐coated films is established at the time of deposition.</jats:p>

Topics
  • impedance spectroscopy
  • microstructure
  • semiconductor
  • physical vapor deposition
  • Silicon
  • annealing
  • aligned
  • Raman microscopy