People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zhang, Jin
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2024Probing quantum floating phases in Rydberg atom arrayscitations
- 2024Design and 3D Printing of Polyacrylonitrile‐Derived Nanostructured Carbon Architecturescitations
- 2022Soft Liquid Metal Infused Conductive Spongescitations
- 2022Induction heating for the removal of liquid metal-based implant mimics: a proof-of-conceptcitations
- 2020Carbonization of low thermal stability polymers at the interface of liquid metalscitations
- 2020Grain boundary mobilities in polycrystalscitations
- 2018Electrodeposited Ni-Based Magnetic Mesoporous Films as Smart Surfaces for Atomic Layer Deposition: An “All-Chemical” Deposition Approach toward 3D Nanoengineered Composite Layers
- 2018Three-dimensional grain growth in pure iron. Part I. statistics on the grain levelcitations
- 2018Fracture and fatigue behaviour of epoxy nanocomposites containing 1-D and 2-D nanoscale carbon fillerscitations
- 2018Electrodeposited Ni-based magnetic mesoporous films as smart surfaces for atomic layer deposition: an 'all-chemical' deposition approach toward 3D nanoengineered composite layerscitations
- 2017Aligning carbon nanofibres in glass-fibre/epoxy composites to improve interlaminar toughness and crack-detection capabilitycitations
- 2017Using carbon nanofibre Sensors for in-situ detection and monitoring of disbonds in bonded composite jointscitations
- 2017Novel electrically conductive porous PDMS/carbon nanofiber composites for deformable strain sensors and conductorscitations
- 2017Determining material parameters using phase-field simulations and experimentscitations
- 2017Voltage-induced coercivity reduction in nanoporous alloy films : a boost towards energy-efficient magnetic actuationcitations
- 2016A novel route for tethering graphene with iron oxide and its magnetic field alignment in polymer nanocompositescitations
- 2016Multifunctional properties of epoxy nanocomposites reinforced by aligned nanoscale carboncitations
- 2016Efficient perovskite solar cells by metal ion dopingcitations
- 2016Room-temperature synthesis of three-dimensional porous ZnO@CuNi hybrid magnetic layers with photoluminescent and photocatalytic propertiescitations
- 2016Nanocasting synthesis of mesoporous SnO₂ with a tunable ferromagnetic response through Ni loadingcitations
- 2016Nanomechanical behaviour of open-cell nanoporous metals: homogeneous versus thickness-dependent porositycitations
- 2015Aligning multilayer graphene flakes with an external electric field to improve multifunctional properties of epoxy nanocompositescitations
- 2015Epoxy nanocomposites with aligned carbon nanofillers by external electric fields
- 2015Improving the toughness and electrical conductivity of epoxy nanocomposites by using aligned carbon nanofibrescitations
Places of action
Organizations | Location | People |
---|
article
Design and 3D Printing of Polyacrylonitrile‐Derived Nanostructured Carbon Architectures
Abstract
<jats:p> Nanostructured carbon materials with designer geometries are of great interest for a wide range of energy‐based and environmental applications due to their tunable microstructure, which allows for optimized properties and performance, as well as their ability to be shaped in complex three‐dimensional (3D) geometries suited for targeted applications. However, achieving a controllable way for preparing nanostructured carbon materials with precise macroscale control has proven to be challenging. Herein, a straightforward approach for 3D printing of nanostructured polyacrylonitrile (PAN)‐derived carbon materials controlled by employing self‐assembling resins in liquid crystal display printing is presented. The correlation between resin composition, printing parameters, and PAN thermal transformation conditions is identified using a combination of thermoanalytical and structural techniques. The nanostructured PAN materials are readily transformed into carbon with a voided microstructure while retaining the original macro‐architecture of the 3D printed polymer precursor objects. The resulting carbon materials are electrically conductive and feature nitrogen active sites controlled by pyrolysis temperature. This method offers a simple way to produce nanostructured carbon‐based materials with an arbitrary shape, presenting the possibility of advantageous characteristics for a range of potential applications in both the fields of energy and the environment.</jats:p>