Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mahle, John J.

  • Google
  • 1
  • 2
  • 9

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Highly Mesoporous Zr‐Based MOF‐Fabric Composites: A Benign Approach for Expeditious Degradation of Chemical Warfare Agents and Simulants9citations

Places of action

Chart of shared publication
Abdelmigeed, Mai O.
1 / 3 shared
Peterson, Gregory W.
1 / 3 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Abdelmigeed, Mai O.
  • Peterson, Gregory W.
OrganizationsLocationPeople

article

Highly Mesoporous Zr‐Based MOF‐Fabric Composites: A Benign Approach for Expeditious Degradation of Chemical Warfare Agents and Simulants

  • Abdelmigeed, Mai O.
  • Mahle, John J.
  • Peterson, Gregory W.
Abstract

<jats:title>Abstract</jats:title><jats:p>Recent research has demonstrated the degradation of organophosphonates through hydrolysis using microporous UiO–66–NH<jats:sub>2</jats:sub>‐fabric composites. Yet, challenges remain due to the limitations of organophosphonates accessing active sites in large, engineered granules. To address this, an innovative approach to integrate mesoporous UiO–66–NH<jats:sub>2</jats:sub> onto various fabrics is provided, thereby overcoming previous mass transfer limitations. Mesoporosity in the UiO–66–NH<jats:sub>2</jats:sub>‐fabric is attributed to the amphoteric cocamidopropylbetaine (CAPB) surfactant which templates the mesochannel construction. Unexpectedly, because the synthesis is aqueous, benign, low temperature (60°C), and avoids strong acids and toxic solvents, it is compatible with fragile supports such as untreated cotton. The UiO–66–NH<jats:sub>2</jats:sub>‐fabric composite formed using treated polypropylene (PP) attains a BET specific surface area of 360 m<jats:sup>2</jats:sup> g<jats:sup>−1</jats:sup><jats:sub>comp</jats:sub>. Remarkably, the mesoporous UiO–66–NH<jats:sub>2</jats:sub>‐composites exhibit a pore volume as large as 0.2 cm<jats:sup>3</jats:sup> g<jats:sup>−1</jats:sup><jats:sub>comp</jats:sub>, 33% in the mesoporous range, which is higher than other previous reports. Practically, the mesoporous UiO–66–NH<jats:sub>2</jats:sub>‐treated PP composite enhances the rate of methyl paraoxon (DMNP) degradation, showing a <jats:italic>t</jats:italic><jats:sub>1/2</jats:sub> value that is 15 times faster than microporous UiO–66–NH<jats:sub>2</jats:sub> composites measured under the same conditions. Similar trends are observed in the degradation of actual nerve agents. These composites hold significant potential across diverse applications, including filtration, protection, and catalysis.</jats:p>

Topics
  • impedance spectroscopy
  • pore
  • surface
  • composite
  • surfactant