Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Baksi, Ananya

  • Google
  • 3
  • 6
  • 16

TU Dortmund University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024Mechanistic Insights into the Stabilization of In Situ Formed γ‐NiOOH Species on Ni<sub>60</sub>Nb<sub>40</sub> Nanoglass for Effective Urea Electro‐Oxidation6citations
  • 2023Evolution of Multicomponent [Pd2ABCD] Cages9citations
  • 2020Structural insights into metal-metalloid glasses from mass spectrometry1citations

Places of action

Chart of shared publication
Gogoi, Palash J.
1 / 1 shared
Sohel, Amir
1 / 1 shared
Phukan, Plabana
1 / 1 shared
Clever, Guido
1 / 3 shared
Wu, Kai
1 / 5 shared
Benchimol, Elie
1 / 2 shared
Chart of publication period
2024
2023
2020

Co-Authors (by relevance)

  • Gogoi, Palash J.
  • Sohel, Amir
  • Phukan, Plabana
  • Clever, Guido
  • Wu, Kai
  • Benchimol, Elie
OrganizationsLocationPeople

article

Mechanistic Insights into the Stabilization of In Situ Formed γ‐NiOOH Species on Ni<sub>60</sub>Nb<sub>40</sub> Nanoglass for Effective Urea Electro‐Oxidation

  • Gogoi, Palash J.
  • Sohel, Amir
  • Phukan, Plabana
  • Baksi, Ananya
Abstract

<jats:title>Abstract</jats:title><jats:p>The formation of NiOOH on the catalyst surface is widely considered to be the active species in electrochemical urea oxidation reactions (UOR). Though in situ‐formed NiOOH species are reported to be more active than the synthesized ones, the mechanistic study of the actual active species remains a daunting task due to the possibility of different phases and instability of surface‐formed NiOOH. Herein, mechanistic UOR aspects of electrochemically activated metallic Ni<jats:sub>60</jats:sub>Nb<jats:sub>40</jats:sub> Nanoglass showing stability toward the γ‐NiOOH phase are reported, probed via in situ Raman spectroscopy, supported by electron microscopy analysis and X‐ray photoelectron spectroscopy in contrast with the β‐NiOOH formation favored on Ni foil. Detailed mechanistic study further reveals that γ‐NiOOH predominantly follows a direct UOR mechanism while β‐NiOOH favors indirect UOR from time‐dependent Raman study, and electrochemical impedance spectroscopy (EIS) analysis. The Nanoglass has shown outstanding UOR performance with a low Tafel slope of 16 mV dec<jats:sup>−1</jats:sup> and stability for prolonged electrolysis (≈38 mA cm<jats:sup>−2</jats:sup> for 70 h) that can be attributed to the nanostructured glassy interfaces facilitating more γ‐NiOOH species formation and stabilization on the surface. The present study opens up a new direction for the development of inexpensive Ni‐based UOR catalysts and sheds light on the UOR mechanism.</jats:p>

Topics
  • surface
  • phase
  • electron microscopy
  • electrochemical-induced impedance spectroscopy
  • Raman spectroscopy
  • photoelectron spectroscopy