People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Patil, Indrajit
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
MXene‐Derived TiO<sub>2</sub>/Starbon Nanocomposite as a Remarkable Electrode Material for Coin‐Cell Symmetric Supercapacitor
Abstract
<jats:title>Abstract</jats:title><jats:p>In this study, the synthesis of a MXene (Ti<jats:sub>3</jats:sub>C<jats:sub>2</jats:sub>T<jats:sub>x</jats:sub>)‐derived TiO<jats:sub>2</jats:sub>/starbon (M‐TiO<jats:sub>2</jats:sub>/Starbon‐800 °C) nanocomposite using a facile calcination method is explored. High‐temperature exposure transforms layered Ti<jats:sub>3</jats:sub>C<jats:sub>2</jats:sub>T<jats:sub>x</jats:sub> into rod‐like TiO<jats:sub>2</jats:sub> and starbon into amorphous carbon. The resulting M‐TiO<jats:sub>2</jats:sub>/Starbon‐800 °C nanocomposite exhibits a significantly larger surface area and pore volume compared to its individual components, leading to superior electrochemical performance. In a three‐electrode configuration, the nanocomposite achieved a specific capacitance (C<jats:sub>sp</jats:sub>) of 1352 Fg⁻¹ at 1 Ag⁻¹, while retaining more than 99% of its C<jats:sub>sp</jats:sub> after 50 000 charge/discharge cycles. Furthermore, when incorporated into a two‐electrode symmetric coin cell, it demonstrates a C<jats:sub>sp</jats:sub> of 115 Fg⁻¹ along with exceptional long cycle life. Moreover, the device shows an energy density (ED) of 51 Whkg<jats:sup>−1</jats:sup> and a power density (PD) of 7912 Wkg<jats:sup>−1</jats:sup> at 5 Ag<jats:sup>−1</jats:sup>. The enhanced charge storage is attributed to the formation of a porous structure with a high specific surface area resulting from the interaction between M‐TiO<jats:sub>2</jats:sub> nanorods and starbon, which facilitates efficient ion penetration.</jats:p>