Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pieshkov, Tymofii

  • Google
  • 1
  • 6
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Deciphering Sodium‐Ion Storage: 2D‐Sulfide versus Oxide Through Experimental and Computational Analyses4citations

Places of action

Chart of shared publication
Chattopadhyay, Shreyasi
1 / 5 shared
Ajayan, Pulickel
1 / 9 shared
Autreto, Pedro Alves Da Silva
1 / 1 shared
Kundu, Manab
1 / 5 shared
Sengupta, Shilpi
1 / 2 shared
Oliveira, Caique Campos De
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Chattopadhyay, Shreyasi
  • Ajayan, Pulickel
  • Autreto, Pedro Alves Da Silva
  • Kundu, Manab
  • Sengupta, Shilpi
  • Oliveira, Caique Campos De
OrganizationsLocationPeople

article

Deciphering Sodium‐Ion Storage: 2D‐Sulfide versus Oxide Through Experimental and Computational Analyses

  • Chattopadhyay, Shreyasi
  • Ajayan, Pulickel
  • Autreto, Pedro Alves Da Silva
  • Kundu, Manab
  • Pieshkov, Tymofii
  • Sengupta, Shilpi
  • Oliveira, Caique Campos De
Abstract

<jats:title>Abstract</jats:title><jats:p>Transition metal derivatives exhibit high theoretical capacity, making them promising anode materials for sodium‐ion batteries. Sulfides, known for their superior electrical conductivity compared to oxides, enhance charge transfer, leading to improved electrochemical performance. Here, a hierarchical WS<jats:sub>2</jats:sub> micro‐flower is synthesized by thermal sulfurization of WO<jats:sub>3</jats:sub>. Comprising interconnected thin nanosheets, this structure offers increased surface area, facilitating extensive internal surfaces for electrochemical redox reactions. The WS<jats:sub>2</jats:sub> micro‐flower demonstrates a specific capacity of ≈334 mAh g<jats:sup>−1</jats:sup> at 15 mA g<jats:sup>−1</jats:sup>, nearly three times higher than its oxide counterpart. Further, it shows very stable performance as a high‐temperature (65 °C) anode with ≈180 mAh g<jats:sup>−1</jats:sup> reversible capacity at 100 mA g<jats:sup>−1</jats:sup> current rate. Post‐cycling analysis confirms unchanged morphology, highlighting the structural stability and robustness of WS<jats:sub>2</jats:sub>. DFT calculations show that the electronic bandgap in both WS<jats:sub>2</jats:sub> and WO<jats:sub>3</jats:sub> increases when going from the bulk to monolayers. Na adsorption calculations show that Na atoms bind strongly in WO<jats:sub>3</jats:sub> with a higher energy diffusion barrier when compared to WS<jats:sub>2</jats:sub>, corroborating the experimental findings. This study presents a significant insight into electrode material selection for sodium‐ion storage applications.</jats:p>

Topics
  • impedance spectroscopy
  • morphology
  • surface
  • Sodium
  • density functional theory
  • electrical conductivity