People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Tybrandt, Klas
Linköping University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024Stretchable Tissue‐Like Gold Nanowire Composites with Long‐Term Stability for Neural Interfacescitations
- 2024Stretchable Tissue-Like Gold Nanowire Composites with Long-Term Stability for Neural Interfaces.
- 2023Elucidating the Bulk Morphology of Cellulose-Based Conducting Aerogels with X-Ray Microtomography
- 2023Elucidating the Bulk Morphology of Cellulose-Based Conducting Aerogels with X-Ray Microtomography
- 2023Tuneable Anisotropic Plasmonics with Shape‐Symmetric Conducting Polymer Nanoantennascitations
- 2021Investigating the role of polymer size on ionic conductivity in free-standing hyperbranched polyelectrolyte membranescitations
- 2020Elastic conducting polymer composites in thermoelectric modulescitations
- 2020Soft Electronics Based on Stretchable and Conductive Nanocomposites for Biomedical Applications.citations
- 2019Understanding the characteristics of conducting polymer-redox biopolymer supercapacitorscitations
- 2016Multilayer Patterning of High Resolution Intrinsically Stretchable Electronicscitations
- 2016Bright stretchable alternating current electroluminescent displays based on high permittivity compositescitations
Places of action
Organizations | Location | People |
---|
article
Stretchable Tissue‐Like Gold Nanowire Composites with Long‐Term Stability for Neural Interfaces
Abstract
<jats:title>Abstract</jats:title><jats:p>Soft and stretchable nanocomposites can match the mechanical properties of neural tissue, thereby minimizing foreign body reactions to provide optimal stimulation and recording specificity. Soft materials for neural interfaces should simultaneously fulfill a wide range of requirements, including low Young's modulus (<<1 MPa), stretchability (≥30%), high conductivity (>> 1000 S cm<jats:sup>−1</jats:sup>), biocompatibility, and chronic stability (>> 1 year). Current nanocomposites do not fulfill the above requirements, in particular not the combination of softness and high conductivity. Here, this challenge is addressed by developing a scalable and robust synthesis route based on polymeric reducing agents for smooth, high‐aspect ratio gold nanowires (AuNWs) of controllable dimensions with excellent biocompatibility. AuNW‐silicone composites show outstanding performance with nerve‐like softness (250 kPa), high conductivity (16 000 S cm<jats:sup>−1</jats:sup>), and reversible stretchability. Soft multielectrode cuffs based on the composite achieve selective functional stimulation, recordings of sensory stimuli in rat sciatic nerves, and show an accelerated lifetime stability of >3 years. The scalable synthesis method provides a chemically stable alternative to the widely used AgNWs, thereby enabling new applications within electronics, biomedical devices, and electrochemistry.</jats:p>