Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Le Donne, Andrea

  • Google
  • 5
  • 40
  • 21

University of Ferrara

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2024Tuning Wetting–Dewetting Thermomechanical Energy for Hydrophobic Nanopores via Preferential Intrusion3citations
  • 2024Effect of linker hybridization on the wetting of hydrophobic metal-organic frameworks3citations
  • 2024Counterintuitive Trend of Intrusion Pressure with Temperature in the Hydrophobic Cu<sub>2</sub>(tebpz) MOF3citations
  • 2024Mild-Temperature Supercritical Water Confined in Hydrophobic Metal–Organic Frameworks5citations
  • 2023Effect of Crystallite Size on the Flexibility and Negative Compressibility of Hydrophobic Metal–Organic Frameworks7citations

Places of action

Chart of shared publication
Grosu, Yaroslav
5 / 24 shared
Amayuelas, Eder
3 / 6 shared
Anagnostopoulos, Argyrios
1 / 6 shared
Bartolome, Luis
3 / 5 shared
Meloni, Simone
5 / 27 shared
Chorazewski, Mirosław
2 / 4 shared
Sleczkowski, Piotr
1 / 2 shared
Lowe, Alexander R.
1 / 4 shared
Wasiak, Michał
1 / 3 shared
Mor, Jaideep
1 / 1 shared
Sigolo, Gianmarco
1 / 1 shared
Zajdel, Pawel
1 / 2 shared
Cristiglio, Viviana
1 / 5 shared
Johnson, Liam J. W.
2 / 2 shared
Caporale, Davide
1 / 1 shared
Sharma, Sandeep Kumar
1 / 1 shared
Scheller, Łukasz
1 / 2 shared
Merchiori, Sebastiano
2 / 3 shared
Wu, Xudong
1 / 3 shared
Yakovenko, Andrey A.
3 / 10 shared
Zajdel, Paweł
3 / 10 shared
Trump, Benjamin A.
3 / 5 shared
Scheller, Lukasz
2 / 3 shared
Bhatia, Ribhu
1 / 5 shared
Lowe, Alexander
1 / 1 shared
Li, Dan
2 / 8 shared
Alvelli, Marta
1 / 2 shared
Yu, Jiangjing
1 / 2 shared
Chorążewski, Mirosław
1 / 5 shared
Geppert-Rybczyńska, Monika
1 / 4 shared
Li, Mian
2 / 3 shared
Lowe, Alexander Rowland
1 / 4 shared
Littlefair, Josh D.
1 / 1 shared
Yu, Jiang-Jing
1 / 1 shared
Wu, Xu-Dong
1 / 1 shared
Geppert-Rybczynska, Monika
1 / 2 shared
Lopez, Gabriel A.
1 / 1 shared
Grancini, Giulia
1 / 13 shared
Mirani, Diego
1 / 3 shared
Carter, Marcus
1 / 1 shared
Chart of publication period
2024
2023

Co-Authors (by relevance)

  • Grosu, Yaroslav
  • Amayuelas, Eder
  • Anagnostopoulos, Argyrios
  • Bartolome, Luis
  • Meloni, Simone
  • Chorazewski, Mirosław
  • Sleczkowski, Piotr
  • Lowe, Alexander R.
  • Wasiak, Michał
  • Mor, Jaideep
  • Sigolo, Gianmarco
  • Zajdel, Pawel
  • Cristiglio, Viviana
  • Johnson, Liam J. W.
  • Caporale, Davide
  • Sharma, Sandeep Kumar
  • Scheller, Łukasz
  • Merchiori, Sebastiano
  • Wu, Xudong
  • Yakovenko, Andrey A.
  • Zajdel, Paweł
  • Trump, Benjamin A.
  • Scheller, Lukasz
  • Bhatia, Ribhu
  • Lowe, Alexander
  • Li, Dan
  • Alvelli, Marta
  • Yu, Jiangjing
  • Chorążewski, Mirosław
  • Geppert-Rybczyńska, Monika
  • Li, Mian
  • Lowe, Alexander Rowland
  • Littlefair, Josh D.
  • Yu, Jiang-Jing
  • Wu, Xu-Dong
  • Geppert-Rybczynska, Monika
  • Lopez, Gabriel A.
  • Grancini, Giulia
  • Mirani, Diego
  • Carter, Marcus
OrganizationsLocationPeople

article

Counterintuitive Trend of Intrusion Pressure with Temperature in the Hydrophobic Cu<sub>2</sub>(tebpz) MOF

  • Grosu, Yaroslav
  • Merchiori, Sebastiano
  • Wu, Xudong
  • Yakovenko, Andrey A.
  • Zajdel, Paweł
  • Trump, Benjamin A.
  • Scheller, Lukasz
  • Bhatia, Ribhu
  • Lowe, Alexander
  • Meloni, Simone
  • Li, Dan
  • Le Donne, Andrea
  • Alvelli, Marta
  • Yu, Jiangjing
  • Chorążewski, Mirosław
  • Geppert-Rybczyńska, Monika
  • Li, Mian
Abstract

<jats:title>Abstract</jats:title><jats:p>Liquid porosimetry experiments reveal a peculiar trend of the intrusion pressure of water in hydrophobic Cu<jats:sub>2</jats:sub>(3,3′,5,5′‐tetraethyl‐4,4′‐bipyrazolate) MOF. At lower temperature (<jats:italic>T</jats:italic>) range, the intrusion pressure (<jats:italic>P<jats:sup>i</jats:sup></jats:italic>) increases with <jats:italic>T</jats:italic>. For higher <jats:italic>T</jats:italic> values, <jats:italic>P<jats:sup>i</jats:sup></jats:italic> first reaches a maximum and then decreases. This is at odds with the Young–Laplace law, which for systems showing a continuous decrease of contact angle with <jats:italic>T</jats:italic> predicts a corresponding reduction of the intrusion pressure. Though the Young–Laplace law is not expected to provide quantitative predictions at the subnanoscale of Cu<jats:sub>2</jats:sub>(tebpz) pores, the physical intuition suggests that to a reduction of their hydrophobicity corresponds a reduction of the <jats:italic>P<jats:sup>i</jats:sup></jats:italic>. Molecular dynamics simulations and sychrothron experiments allowed to clarify the mechanism of the peculiar trend of <jats:italic>P<jats:sup>i</jats:sup></jats:italic> with <jats:italic>T</jats:italic>. At increasing temperatures the vapor density within the MOF’ pores grows significantly, bringing the corresponding partial pressure to ≈5 MPa. This pressure, which is consistent with the shift of <jats:italic>P<jats:sup>i</jats:sup></jats:italic> observed in liquid porosimetry, represents a threshold to be overcame before intrusion takes place. Beyond some value of temperature, the phenomenon of reduction of hydrophobicity (and water surface tension) dominated over the opposite effect of increase of vapor pressure and <jats:italic>P<jats:sup>i</jats:sup></jats:italic> inverts its trend with <jats:italic>T</jats:italic>.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • pore
  • surface
  • experiment
  • simulation
  • molecular dynamics
  • porosimetry