Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Riera-Galindo, Sergi

  • Google
  • 5
  • 38
  • 177

Institut de Ciència de Materials de Barcelona

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2024High Polymer Molecular Weight Yields Solar Cells with Simultaneously Improved Performance and Thermal Stability7citations
  • 2020Doped Conjugated Polymer Enclosing a Redox Polymer : Wiring Polyquinones with Poly(3,4‐Ethylenedioxythiophene)16citations
  • 2020Sequential Doping of Ladder-Type Conjugated Polymers for Thermally Stable n-Type Organic Conductors57citations
  • 2020Sequential Doping of Ladder-Type Conjugated Polymers for Thermally Stable n-Type Organic Conductors57citations
  • 2019Impact of Singly Occupied Molecular Orbital energy on the n-doping efficiency of benzimidazole-derivatives40citations

Places of action

Chart of shared publication
Ramos, Nicolás
1 / 2 shared
Mas-Torrent, Marta
1 / 5 shared
Lópezmir, Laura
1 / 1 shared
Martin, Jaime
1 / 13 shared
Gutiérrezfernández, Edgar
1 / 2 shared
Campoy-Quiles, Mariano
1 / 20 shared
Sanz Lleó, Marta
1 / 2 shared
Crispin, Xavier
1 / 32 shared
Khan, Ziyauddin
1 / 2 shared
Vagin, Mikhail
1 / 12 shared
Ajjan, Fátima
1 / 1 shared
Berggren, Magnus
4 / 44 shared
Petsagkourakis, Ioannis
1 / 7 shared
Gabrielsson, Roger
1 / 2 shared
Lienemann, Samuel
1 / 4 shared
Fahlman, Mats
1 / 21 shared
Braun, Slawomir
1 / 4 shared
Inganäs, Olle
1 / 22 shared
Puttisong, Yuttapoom
3 / 12 shared
Chen, Weimin M.
1 / 6 shared
Moro, Fabrizio
2 / 7 shared
Wang, Gang
3 / 23 shared
Yan, Hongping
2 / 2 shared
Hultmark, Sandra
2 / 6 shared
Müller, Christian
1 / 43 shared
Wang, Suhao
3 / 11 shared
Ruoko, Tero-Petri
3 / 11 shared
Fabiano, Simone
3 / 34 shared
Muller, Christian
1 / 7 shared
Chen, Weimin
2 / 23 shared
Pizzotti, Maddalena
1 / 5 shared
Pavlopoulou, Eleni
1 / 10 shared
Di Carlo, Gabriele
1 / 1 shared
Tessore, Francesca
1 / 4 shared
Kemerink, Martijn
1 / 31 shared
Solano, Eduardo
1 / 27 shared
Forni, Alessandra
1 / 5 shared
Orbelli Biroli, Alessio
1 / 1 shared
Chart of publication period
2024
2020
2019

Co-Authors (by relevance)

  • Ramos, Nicolás
  • Mas-Torrent, Marta
  • Lópezmir, Laura
  • Martin, Jaime
  • Gutiérrezfernández, Edgar
  • Campoy-Quiles, Mariano
  • Sanz Lleó, Marta
  • Crispin, Xavier
  • Khan, Ziyauddin
  • Vagin, Mikhail
  • Ajjan, Fátima
  • Berggren, Magnus
  • Petsagkourakis, Ioannis
  • Gabrielsson, Roger
  • Lienemann, Samuel
  • Fahlman, Mats
  • Braun, Slawomir
  • Inganäs, Olle
  • Puttisong, Yuttapoom
  • Chen, Weimin M.
  • Moro, Fabrizio
  • Wang, Gang
  • Yan, Hongping
  • Hultmark, Sandra
  • Müller, Christian
  • Wang, Suhao
  • Ruoko, Tero-Petri
  • Fabiano, Simone
  • Muller, Christian
  • Chen, Weimin
  • Pizzotti, Maddalena
  • Pavlopoulou, Eleni
  • Di Carlo, Gabriele
  • Tessore, Francesca
  • Kemerink, Martijn
  • Solano, Eduardo
  • Forni, Alessandra
  • Orbelli Biroli, Alessio
OrganizationsLocationPeople

article

High Polymer Molecular Weight Yields Solar Cells with Simultaneously Improved Performance and Thermal Stability

  • Ramos, Nicolás
  • Mas-Torrent, Marta
  • Lópezmir, Laura
  • Martin, Jaime
  • Gutiérrezfernández, Edgar
  • Campoy-Quiles, Mariano
  • Sanz Lleó, Marta
  • Riera-Galindo, Sergi
Abstract

<jats:title>Abstract</jats:title><jats:p>Simple synthetic routes, high active layer thickness tolerance as well as stable organic solar cells are relentlessly pursued as key enabling traits for the upscaling of organic photovoltaics. Here, the potential to address these issues by tuning donor polymer molecular weight is investigated. Specifically, the focus is on PTQ10, a polymer with low synthetic complexity, with number average molecular weights of 2.4, 6.2, 16.8, 52.9, and 54.4 kDa, in combination with three different non‐fullerene acceptors, namely Y6, Y12, and IDIC. Molecular weight, indeed, unlocks a threefold increase in power conversion efficiency for these blends. Importantly, efficiencies above 10% for blade coated devices with thicknesses between 200 and 350 nm for blends incorporating high molecular weight donor are shown. Spectroscopic, GIWAXS and charge carrier mobility data suggest that the strong photocurrent improvement with molecular weight is related to both, improved electronic transport and polymer contribution to exciton generation. Moreover, it is demonstrated that solar cells based on high molecular weight PTQ10 are more thermally stable due to a higher glass transition temperature, thus also improving device stability.</jats:p>

Topics
  • impedance spectroscopy
  • polymer
  • mobility
  • glass
  • glass
  • glass transition temperature
  • molecular weight
  • power conversion efficiency