People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Martin, Jaime
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2024High Polymer Molecular Weight Yields Solar Cells with Simultaneously Improved Performance and Thermal Stabilitycitations
- 2024Using spatial confinement to decipher polymorphism in the organic semiconductor p-DTS(FBTTh2)2citations
- 2024Enhancing the conductivity and thermoelectric performance of semicrystalline conducting polymers through controlled tie chain incorporationcitations
- 2024Impact of Oligoether Side-Chain Length on the Thermoelectric Properties of a Polar Polythiophenecitations
- 2024On The Thermal Conductivity of Conjugated Polymers for Thermoelectricscitations
- 2024Enhancing the Electrical Conductivity and Long‐Term Stability of PEDOT:PSS Electrodes through Sequential Treatment with Nitric Acid and Cesium Chloridecitations
- 2024Enhancing the Conductivity and Thermoelectric Performance of Semicrystalline Conducting Polymers through Controlled Tie Chain Incorporation.
- 2023Impact of oxidation-induced ordering on the electrical and mechanical properties of a polythiophene co-processed with bistriflimidic acidcitations
- 2023Impact of Oligoether Side-Chain Length on the Thermoelectric Properties of a Polar Polythiophenecitations
- 2022Correlating Acceptor Structure and Blend Nanostructure with the Photostability of Nonfullerene Organic Solar Cellscitations
- 2021Physical Aging Behavior of a Glassy Polyethercitations
- 2021Improving molecular alignment and charge percolation in semiconducting polymer films with highly localized electronic states through tailored thermal annealingcitations
- 2020The Importance of Quantifying the Composition of the Amorphous Intermixed Phase in Organic Solar Cellscitations
Places of action
Organizations | Location | People |
---|
article
High Polymer Molecular Weight Yields Solar Cells with Simultaneously Improved Performance and Thermal Stability
Abstract
<jats:title>Abstract</jats:title><jats:p>Simple synthetic routes, high active layer thickness tolerance as well as stable organic solar cells are relentlessly pursued as key enabling traits for the upscaling of organic photovoltaics. Here, the potential to address these issues by tuning donor polymer molecular weight is investigated. Specifically, the focus is on PTQ10, a polymer with low synthetic complexity, with number average molecular weights of 2.4, 6.2, 16.8, 52.9, and 54.4 kDa, in combination with three different non‐fullerene acceptors, namely Y6, Y12, and IDIC. Molecular weight, indeed, unlocks a threefold increase in power conversion efficiency for these blends. Importantly, efficiencies above 10% for blade coated devices with thicknesses between 200 and 350 nm for blends incorporating high molecular weight donor are shown. Spectroscopic, GIWAXS and charge carrier mobility data suggest that the strong photocurrent improvement with molecular weight is related to both, improved electronic transport and polymer contribution to exciton generation. Moreover, it is demonstrated that solar cells based on high molecular weight PTQ10 are more thermally stable due to a higher glass transition temperature, thus also improving device stability.</jats:p>