People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Blanquer, Andreu
Universitat Autònoma de Barcelona
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Surface modification of Ti40Cu40Zr11Fe3Sn3Ag3 amorphous alloy for enhanced biocompatibility in implant applications
- 2023Accelerated biodegradation of FeMn porous alloy coated with ZnOcitations
- 2023Hierarchical Surface Pattern on Ni-Free Ti-Based Bulk Metallic Glass to Control Cell Interactions.
- 2023Surface Modified β-Ti-18Mo-6Nb-5Ta (wt%) Alloy for Bone Implant Applications:citations
- 2023Hierarchical Surface Pattern on Ni‐Free Ti‐Based Bulk Metallic Glass to Control Cell Interactionscitations
- 2023Surface Modified β-Ti-18Mo-6Nb-5Ta (wt%) Alloy for Bone Implant Applications: Composite Characterization and Cytocompatibility Assessment
- 2022Biodegradable porous FeMn(-xAg) alloys:citations
- 2018Cytocompatibility assessment of Ti-Zr-Pd-Si-(Nb) alloys with low Young's modulus, increased hardness, and enhanced osteoblast differentiation for biomedical applications
- 2017Study of Galfenol direct cytotoxicity and remote microactuation in cellscitations
- 2016Effect of surface modifications of Ti40Zr10Cu38Pd12 bulk metallic glass and Ti-6Al-4V alloy on human osteoblasts in vitro biocompatibilitycitations
- 2016Novel Fe-Mn-Si-Pd alloys: Insights into mechanical, magnetic, corrosion resistance and biocompatibility performancescitations
- 2015Nanostructured Ti-Zr-Pd-Si-(Nb) bulk metallic composites: Novel biocompatible materials with superior mechanical strength and elastic recoverycitations
- 2014In vitro biocompatibility assessment of Ti40Cu38Zr10Pd12 bulk metallic glasscitations
- 2013On the biodegradability, mechanical behavior, and cytocompatibility of amorphous Mg72Zn23Ca5 and crystalline Mg70Zn23Ca5Pd2 alloys as temporary implant materialscitations
- 2013Novel Ti-Zr-Hf-Fe nanostructured alloy for biomedical applicationscitations
- 2012Improved mechanical performance and delayed corrosion phenomena in biodegradable Mg-Zn-Ca alloys through Pd-alloyingcitations
Places of action
Organizations | Location | People |
---|
article
Hierarchical Surface Pattern on Ni‐Free Ti‐Based Bulk Metallic Glass to Control Cell Interactions
Abstract
Ni-free Ti-based bulk metallic glasses (BMGs) are exciting materials for biomedical applications because of their outstanding biocompatibility and advantageous mechanical properties. The glassy nature of BMGs allows them to be shaped and patterned via thermoplastic forming (TPF). This work demonstrates the versatility of the TPF technique to create micro- and nano-patterns and hierarchical structures on Ti40Zr10Cu34Pd14Sn2 BMG. Particularly, a hierarchical structure fabricated by a two-step TPF process integrates 400 nm hexagonal close-packed protrusions on 2.5 µm square protuberances while preserving the advantageous mechanical properties from the as-cast material state. The correlations between thermal history, structure, and mechanical properties are explored. Regarding biocompatibility, Ti40Zr10Cu34Pd14Sn2 BMGs with four surface topographies (flat, micro-patterned, nano-patterned, and hierarchical-structured surfaces) are investigated using Saos-2 cell lines. Alamar Blue assay and live/dead analysis show that all tested surfaces have good cell proliferation and viability. Patterned surfaces are observed to promote the formation of longer filopodia on the edge of the cytoskeleton, leading to star-shaped and dendritic cell morphologies compared with the flat surface. In addition to potential implant applications, TPF-patterned Ti-BMGs enable a high level of order and design flexibility on the surface topography, expanding the available toolbox for studying cell behavior on rigid and ordered surfaces.