Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Adaannyiak, Moses A.

  • Google
  • 1
  • 4
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Design and Development of Stable Nanocrystalline High‐Entropy Alloy: Coupling Self‐Stabilization and Solute Grain Boundary Segregation Effects6citations

Places of action

Chart of shared publication
Kisslinger, Kim
1 / 2 shared
Gill, Simerjeet K.
1 / 2 shared
Jossou, Ericmoore
1 / 2 shared
Hwang, Sooyeon
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Kisslinger, Kim
  • Gill, Simerjeet K.
  • Jossou, Ericmoore
  • Hwang, Sooyeon
OrganizationsLocationPeople

article

Design and Development of Stable Nanocrystalline High‐Entropy Alloy: Coupling Self‐Stabilization and Solute Grain Boundary Segregation Effects

  • Kisslinger, Kim
  • Adaannyiak, Moses A.
  • Gill, Simerjeet K.
  • Jossou, Ericmoore
  • Hwang, Sooyeon
Abstract

<jats:title>Abstract</jats:title><jats:p>Grain growth is prevalent in nanocrystalline (NC) materials at low homologous temperatures. Solute element addition is used to offset excess energy that drives coarsening at grain boundaries (GBs), albeit mostly for simple binary alloys. This thermodynamic approach is considered complicated in multi‐component alloy systems due to complex pairwise interactions among alloying elements. Guided by empirical and GB‐segregation enthalpy considerations for binary‐alloy systems, a novel alloy design strategy, the <jats:italic>“</jats:italic><jats:italic>pseudo‐binary thermodynamic</jats:italic><jats:italic>”</jats:italic> approach, for stabilizing NC‐high entropy alloys (HEAs) and other multi‐component‐alloy variants is proposed. Using Al<jats:sub>25</jats:sub>Co<jats:sub>25</jats:sub>Cr<jats:sub>25</jats:sub>Fe<jats:sub>25</jats:sub> as a model‐HEA to validate this approach, Zr, Sc, and Hf, are identified as the preferred solutes that would segregate to HEA‐GBs to stabilize it against growth. Using Zr, NC‐Al<jats:sub>25</jats:sub>Co<jats:sub>25</jats:sub>Cr<jats:sub>25</jats:sub>Fe<jats:sub>25</jats:sub> HEAs with minor additions of Zr are synthesized, followed by annealing up to 1123 K. Using advanced characterization techniques— in situ X‐ray diffraction (XRD), scanning/transmission electron microscopy (S/TEM), and atom probe tomography, nanograin stability due to coupling <jats:italic>self‐stabilization</jats:italic> and <jats:italic>solute‐GB segregation</jats:italic> effects is reported in HEAs up to substantially high temperatures. The <jats:italic>self‐stabilization</jats:italic> effect originates from the preferential GB‐segregation of constituent HEA‐elements that stabilizes NC‐Al<jats:sub>25</jats:sub>Co<jats:sub>25</jats:sub>Cr<jats:sub>25</jats:sub>Fe<jats:sub>25</jats:sub> up to 0.5<jats:italic>T</jats:italic><jats:sub>m</jats:sub> (<jats:italic>T</jats:italic><jats:sub>m</jats:sub>–melting temperature). Meanwhile, <jats:italic>solute‐GB segregation</jats:italic> originates from Zr segregation to NC‐Al<jats:sub>25</jats:sub>Co<jats:sub>25</jats:sub>Cr<jats:sub>25</jats:sub>Fe<jats:sub>25</jats:sub> GBs; this results in further stabilization of the phase and grain‐size (≈14 nm) up to ≈0.58 and ≈0.64<jats:italic>T<jats:sub>m</jats:sub></jats:italic>, respectively.</jats:p>

Topics
  • impedance spectroscopy
  • grain
  • phase
  • grain boundary
  • x-ray diffraction
  • transmission electron microscopy
  • annealing
  • melting temperature
  • atom probe tomography
  • grain growth