People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Houben, Lothar
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024A Gd-doped ceria/TiOx nanocomposite as the active layer in a three terminal electrochemical resistivity switch.citations
- 2024W18O49 Nanowhiskers Decorating SiO2 Nanofibers: Lessons from In Situ SEM/TEM Growth to Large Scale Synthesis and Fundamental Structural Understandingcitations
- 2023W18O49 Nanowhiskers Decorating SiO2 Nanofiberscitations
- 2023Encapsulation of Uranium Oxide in Multiwall WS<sub>2</sub> Nanotubes
- 2022Polar Crystal Habit and 3D Electron Diffraction Reveal the Malaria Pigment Hemozoin as a Selective Mixture of Centrosymmetric and Chiral Stereoisomerscitations
- 2022Nanotubes from the Misfit Layered Compound (SmS)1.19TaS2citations
- 2022Nanotubes from the Misfit Layered Compound $(SmS)_{1.19}TaS_2$ : Atomic Structure, Charge Transfer, and Electrical Propertiescitations
- 2020Large lattice distortions and size-dependent bandgap modulation in epitaxial halide perovskite nanowirescitations
- 2020Large lattice distortions and size-dependent bandgap modulation in epitaxial halide perovskite nanowirescitations
- 2018Guided Growth of Horizontal ZnS Nanowires on Flat and Faceted Sapphire Surfacescitations
- 2018A Mechanistic Study of Phase Transformation in Perovskite Nanocrystals Driven by Ligand Passivationcitations
- 2016Tubular structures from the LnS–TaS₂ (Ln = La, Ce, Nd, Ho, Er) and LaSe–TaSe₂ misfit layered compoundscitations
- 2016From dilute isovalent substitution to alloying in CdSeTe nanoplateletscitations
- 2008Metadislocations in the orthorhombic structurally complex alloy Al13Co4citations
- 2006Atomic-resolution imaging of lattice imperfections in semiconductors by conjoined aberration-corrected HRTEM and exit-plane wavefunction retrievalcitations
- 2000Plasmaabscheidung von mikrokristallinem Silizium: Merkmale und Mikrostruktur und deren Deutung im Sinne von Wachstumsvorgängen
Places of action
Organizations | Location | People |
---|
article
Encapsulation of Uranium Oxide in Multiwall WS<sub>2</sub> Nanotubes
Abstract
<jats:title>Abstract</jats:title><jats:p>Uranium is a high‐value energy element, yet also poses an appreciable environmental burden. The demand for a straightforward, low energy, and environmentally friendly method for encapsulating uranium species can be beneficial for long‐term storage of spent uranium fuel and a host of other applications. Leveraging on the low melting point (60 °C) of uranyl nitrate hexahydrate and nanocapillary effect, a uranium compound is entrapped in the hollow core of WS<jats:sub>2</jats:sub> nanotubes. Followingly, the product is reduced at elevated temperatures in a hydrogen atmosphere. Nanocrystalline UO<jats:sub>2</jats:sub> nanoparticles anchor within the WS<jats:sub>2</jats:sub> nanotube lumen are obtained through this procedure. Such methodology can find utilization in the processing of spent nuclear fuel or other highly active radionuclides as well as a fuel for deep space missions. Moreover, the low melting temperatures of different heavy metal‐nitrate hydrates, pave the way for their encapsulation within the hollow core of the WS<jats:sub>2</jats:sub> nanotubes, as demonstrated herein.</jats:p>