Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sporrer, Lukas

  • Google
  • 2
  • 30
  • 35

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Tunable Crystallinity and Electron Conduction in Wavy 2D Conjugated Metal–Organic Frameworks via Halogen Substitution3citations
  • 2023Near IR Bandgap Semiconducting 2D Conjugated Metal‐Organic Framework with Rhombic Lattice and High Mobility32citations

Places of action

Chart of shared publication
Waentig, Albrecht
1 / 1 shared
Mateoalonso, Aurelio
1 / 1 shared
Mücke, David
1 / 1 shared
Lu, Yang
1 / 9 shared
Zhang, Jianjun
1 / 1 shared
Zhang, Yingying
1 / 3 shared
Wang, Mingchao
2 / 6 shared
Yu, Minghao
1 / 2 shared
Fu, Shuai
1 / 3 shared
Feng, Xinliang
2 / 58 shared
Dong, Renhao
2 / 12 shared
Zhang, Haojie
1 / 4 shared
Li, Xue
1 / 5 shared
Kaiser, Ute
1 / 50 shared
Jastrzembski, Kamil
2 / 2 shared
Pohl, Darius
1 / 12 shared
Rellinghaus, Bernd
1 / 19 shared
Polozij, Miroslav
1 / 1 shared
Heine, Thomas
2 / 13 shared
Morag, Ahiud
1 / 2 shared
Wang, Hai I.
1 / 4 shared
Bonn, Mischa
1 / 15 shared
Balos, Vasileios
1 / 2 shared
Petkov, Petko
1 / 4 shared
Revuelta, Sergio
1 / 1 shared
Cánovas, Enrique
1 / 3 shared
Löffler, Markus
1 / 9 shared
Huang, Zhehao
1 / 5 shared
Kuc, Angieszka
1 / 1 shared
Zhou, Guojun
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Waentig, Albrecht
  • Mateoalonso, Aurelio
  • Mücke, David
  • Lu, Yang
  • Zhang, Jianjun
  • Zhang, Yingying
  • Wang, Mingchao
  • Yu, Minghao
  • Fu, Shuai
  • Feng, Xinliang
  • Dong, Renhao
  • Zhang, Haojie
  • Li, Xue
  • Kaiser, Ute
  • Jastrzembski, Kamil
  • Pohl, Darius
  • Rellinghaus, Bernd
  • Polozij, Miroslav
  • Heine, Thomas
  • Morag, Ahiud
  • Wang, Hai I.
  • Bonn, Mischa
  • Balos, Vasileios
  • Petkov, Petko
  • Revuelta, Sergio
  • Cánovas, Enrique
  • Löffler, Markus
  • Huang, Zhehao
  • Kuc, Angieszka
  • Zhou, Guojun
OrganizationsLocationPeople

article

Tunable Crystallinity and Electron Conduction in Wavy 2D Conjugated Metal–Organic Frameworks via Halogen Substitution

  • Waentig, Albrecht
  • Mateoalonso, Aurelio
  • Mücke, David
  • Sporrer, Lukas
  • Lu, Yang
  • Zhang, Jianjun
  • Zhang, Yingying
  • Wang, Mingchao
  • Yu, Minghao
  • Fu, Shuai
  • Feng, Xinliang
  • Dong, Renhao
  • Zhang, Haojie
  • Li, Xue
  • Kaiser, Ute
  • Jastrzembski, Kamil
  • Pohl, Darius
  • Rellinghaus, Bernd
  • Polozij, Miroslav
  • Heine, Thomas
  • Morag, Ahiud
  • Wang, Hai I.
  • Bonn, Mischa
Abstract

<jats:title>Abstract</jats:title><jats:p>Currently, most reported 2D conjugated metal–organic frameworks (2D c‐MOFs) are based on planar polycyclic aromatic hydrocarbons (PAHs) with symmetrical functional groups, limiting the possibility of introducing additional substituents to fine‐tune the crystallinity and electrical properties. Herein, a novel class of wavy 2D c‐MOFs with highly substituted, core‐twisted hexahydroxy‐hexa‐cata‐benzocoronenes (HH‐cHBCs) as ligands is reported. By tailoring the substitution of the c‐HBC ligands with electron‐withdrawing groups (EWGs), such as fluorine, chlorine, and bromine, it is demonstrated that the crystallinity and electrical conductivity at the molecular level can be tuned. The theoretical calculations demonstrate that F‐substitution leads to a more reversible coordination bonding between HH‐cHBCs and copper metal center, due to smaller atomic size and stronger electron‐withdrawing effect. As a result, the achieved F‐substituted 2D c‐MOF exhibits superior crystallinity, comprising ribbon‐like single crystals up to tens of micrometers in length. Moreover, the F‐substituted 2D c‐MOF displays higher electrical conductivity (two orders of magnitude) and higher charge carrier mobility (almost three times) than the Cl‐substituted one. This work provides a new molecular design strategy for the development of wavy 2D c‐MOFs and opens a new route for tailoring the coordination reversibility by ligand substitution toward increased crystallinity and superior electric conductivity.</jats:p>

Topics
  • impedance spectroscopy
  • single crystal
  • mobility
  • copper
  • electrical conductivity
  • crystallinity