People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ali, Muhammad
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024Synergetic and anomalous effect of <scp>CNTs</scp> in the sulphide‐based binary composite for an extraordinary and asymmetric supercapacitor devicecitations
- 2024Nanoparticle's efficacy in the suppression of heavy metals that affect breast cancer progression.citations
- 2023Exploring the potential of hydrothermally synthesized AgZnS@Polyaniline composites as electrode material for high-performance supercapattery devicecitations
- 2023Mechanically robust and highly elastic thermally induced shape memory polyurethane based composites for smart and sustainable robotic applicationscitations
- 2023Prediction of Coal Dilatancy Point Using Acoustic Emission Characteristicscitations
- 2023Biologically potent organotin(<scp>iv</scp>) complexes of <i>N</i>-acetylated β-amino acids with spectroscopic, X-ray powder diffraction and molecular docking studiescitations
- 2023Baseline ImPACT Composite Scores in Student-Athletes With Attention-Deficit/Hyperactivity Disordercitations
- 2023Advanced High‐Energy All‐Solid‐State Hybrid Supercapacitor with Nickel‐Cobalt‐Layered Double Hydroxide Nanoflowers Supported on Jute Stick‐Derived Activated Carbon Nanosheetscitations
- 2022Hybrid composites based on textile hard waste: use as sunshadescitations
- 2020Optimization of tensile properties of bagasse fiber-reinforced composite using response surface methodology
- 2020Investigation of fiber orientation and void content in bagasse fiber composites using image analysis technique
- 2016Self-assembled Multilayers of Silica Nanospheres for Defect Reduction in Non- and Semipolar Gallium Nitride Epitaxial Layers.
- 2009Maskless roughening of sapphire substrates for enhanced light extraction of nitride based blue LEDscitations
- 2008Enhanced electroluminescence in 405 nm InGaN/GaN LEDs by optimized electron blocking layercitations
Places of action
Organizations | Location | People |
---|
article
Advanced High‐Energy All‐Solid‐State Hybrid Supercapacitor with Nickel‐Cobalt‐Layered Double Hydroxide Nanoflowers Supported on Jute Stick‐Derived Activated Carbon Nanosheets
Abstract
<jats:title>Abstract</jats:title><jats:p>Developing efficient, lightweight, and durable all‐solid‐state supercapacitors is crucial for future energy storage systems. The study focuses on optimizing electrode materials to achieve high capacitance and stability. This study introduces a novel two‐step pyrolysis process to synthesize activated carbon nanosheets from jute sticks (JAC), resulting in an optimized JAC‐2 material with a high yield (≈24%) and specific surface area (≈2600 m<jats:sup>2</jats:sup> g<jats:sup>−1</jats:sup>). Furthermore, an innovative in situ synthesis approach is employed to synthesize hybrid nanocomposites (NiCoLDH‐1@JAC‐2) by integrating JAC nanosheets with nickel‐cobalt‐layered double hydroxide nanoflowers (NiCoLDH). These nanocomposites serve as positive electrode materials and JAC‐2 as the negative electrode material in all‐solid‐state asymmetric hybrid supercapacitors (HSCs), exhibiting remarkable performance metrics. The HSCs achieve a specific capacitance of 750 F g<jats:sup>−1</jats:sup>, a specific capacity of 209 mAh g<jats:sup>−1</jats:sup> (at 0.5 A g<jats:sup>−1</jats:sup>), and an energy density of 100 Wh kg<jats:sup>−1</jats:sup> (at 250 W kg<jats:sup>−1</jats:sup>) using PVA/KOH solid electrolyte, while maintaining outstanding cyclic stability. Importantly, a density functional theory framework is utilized to validate the experimental findings, underscoring the potential of this novel approach for enhancing HSC performance and enabling the large‐scale production of transition metal‐based layered double hydroxides.</jats:p>