Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mukherjee, Samik

  • Google
  • 2
  • 17
  • 12

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024SnS2 Thin Film with In Situ and Controllable Sb Doping via Atomic Layer Deposition for Optoelectronic Applications3citations
  • 2024Low-Temperature ALD of SbOx/Sb2Te3 Multilayers with Boosted Thermoelectric Performance9citations

Places of action

Chart of shared publication
Krahl, Fabian
2 / 3 shared
Shin, Dongho
1 / 1 shared
Pang, Chi
1 / 1 shared
Wrzesińskalashkova, Angelika
1 / 1 shared
Wohlrab, Steve
1 / 1 shared
Bahrami, Amin
1 / 10 shared
Vaynzof, Yana
1 / 31 shared
Nielsch, Kornelius
2 / 56 shared
Nasiri, Noushin
1 / 2 shared
Yang, Jun
2 / 5 shared
Lehmann, Sebastian
2 / 28 shared
Popov, Alexey
1 / 13 shared
Potapov, Pavel
1 / 4 shared
Wang, Xiaoyu
1 / 5 shared
Ritschel, Tobias
1 / 2 shared
Geck, Jochen
1 / 3 shared
Lubk, Axel
1 / 11 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Krahl, Fabian
  • Shin, Dongho
  • Pang, Chi
  • Wrzesińskalashkova, Angelika
  • Wohlrab, Steve
  • Bahrami, Amin
  • Vaynzof, Yana
  • Nielsch, Kornelius
  • Nasiri, Noushin
  • Yang, Jun
  • Lehmann, Sebastian
  • Popov, Alexey
  • Potapov, Pavel
  • Wang, Xiaoyu
  • Ritschel, Tobias
  • Geck, Jochen
  • Lubk, Axel
OrganizationsLocationPeople

article

Low-Temperature ALD of SbOx/Sb2Te3 Multilayers with Boosted Thermoelectric Performance

  • Nielsch, Kornelius
  • Krahl, Fabian
  • Mukherjee, Samik
  • Potapov, Pavel
  • Yang, Jun
  • Wang, Xiaoyu
  • Ritschel, Tobias
  • Geck, Jochen
  • Lehmann, Sebastian
  • Lubk, Axel
Abstract

<p>Nanoscale superlattice (SL) structures have proven to be effective in enhancing the thermoelectric (TE) properties of thin films. Herein, the main phase of antimony telluride (Sb<sub>2</sub>Te<sub>3</sub>) thin film with sub-nanometer layers of antimony oxide (SbO<sub>x</sub>) is synthesized via atomic layer deposition (ALD) at a low temperature of 80 °C. The SL structure is tailored by varying the cycle numbers of Sb<sub>2</sub>Te<sub>3</sub> and SbO<sub>x</sub>. A remarkable power factor of 520.8 µW m<sup>−1</sup> K<sup>−2</sup> is attained at room temperature when the cycle ratio of SbO<sub>x</sub> and Sb<sub>2</sub>Te<sub>3</sub> is set at 1:1000 (i.e., SO:ST = 1:1000), corresponding to the highest electrical conductivity of 339.8 S cm<sup>−1</sup>. The results indicate that at the largest thickness, corresponding to ten ALD cycles, the SbOx layers act as a potential barrier that filters out the low-energy charge carriers from contributing to the overall electrical conductivity. In addition to enhancing the scattering of the mid-to-long-wavelength at the SbO<sub>x</sub>/Sb<sub>2</sub>Te<sub>3</sub> interface, the presence of the SbO<sub>x</sub> sub-layer induces the confinement effect and strain forces in the Sb<sub>2</sub>Te<sub>3</sub> thin film, thereby effectively enhancing the Seebeck coefficient and reducing the thermal conductivity. These findings provide a new perspective on the design of SL-structured TE materials and devices.</p>

Topics
  • impedance spectroscopy
  • phase
  • thin film
  • thermal conductivity
  • electrical conductivity
  • atomic layer deposition
  • Antimony