People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Guerfi, Abdelbast
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2023Transport Properties and Local Ions Dynamics in LATP‐Based Hybrid Solid Electrolytescitations
- 2020Direct observation of lithium metal dendrites with ceramic solid electrolytecitations
- 2020Toward an All‐Ceramic Cathode–Electrolyte Interface with Low‐Temperature Pressed NASICON Li<sub>1.5</sub>Al<sub>0.5</sub>Ge<sub>1.5</sub>(PO<sub>4</sub>)<sub>3</sub> Electrolytecitations
- 2020Toward an All-Ceramic Cathode-Electrolyte Interface with Low-Temperature Pressed NASICON Li1.5Al0.5Ge1.5(PO4)3 Electrolytecitations
- 2020Electrospun Li<sub>1.3</sub>Al<sub>0.3</sub>Ti<sub>1.7</sub>(PO<sub>4</sub>)<sub>3</sub> Nanofibers to Develop Solid-State Electrolytes for Lithium Metal Batteries
- 2016Chemically fabricated LiFePO4 thin film electrode for transparent batteries and electrochromic devicescitations
- 2016Plastic electrochromic devices based on viologen-modified TiO2 films prepared at low temperaturecitations
- 2016Li4Ti5O12 and LiMn2O4 thin-film electrodes on transparent conducting oxides for all-solid-state and electrochromic applicationscitations
Places of action
Organizations | Location | People |
---|
article
Transport Properties and Local Ions Dynamics in LATP‐Based Hybrid Solid Electrolytes
Abstract
<jats:title>Abstract</jats:title><jats:p>Hybrid solid electrolytes (HSEs), namely mixtures of polymer and inorganic electrolytes, have supposedly improved properties with respect to inorganic and polymer electrolytes. In practice, HSEs often show ionic conductivity below expectations, as the high interface resistance limits the contribution of inorganic electrolyte particles to the charge transport process. In this study, the transport properties of a series of HSEs containing Li<jats:sub>(1+</jats:sub><jats:italic><jats:sub>x</jats:sub></jats:italic><jats:sub>)</jats:sub>Al<jats:italic><jats:sub>x</jats:sub></jats:italic>Ti<jats:sub>(2–</jats:sub><jats:italic><jats:sub>x</jats:sub></jats:italic><jats:sub>)</jats:sub>(PO<jats:sub>4</jats:sub>)<jats:sub>3</jats:sub> (LATP) as Li<jats:sup>+</jats:sup>‐conducting filler are analyzed. The occurrence of Li<jats:sup>+</jats:sup> exchange across the two phases is proved by isotope exchange experiment, coupled with <jats:sup>6</jats:sup>Li/<jats:sup>7</jats:sup>Li nuclear magnetic resonance (NMR), and by 2D <jats:sup>6</jats:sup>Li exchange spectroscopy (EXSY), which gives a time constant for Li<jats:sup>+</jats:sup> exchange of about 50 ms at 60 °C. Electrochemical impedance spectroscopy (EIS) distinguishes a short‐range and a long‐range conductivity, the latter decreasing with LATP concentration. LATP particles contribute to the overall conductivity only at high temperatures and at high LATP concentrations. Pulsed field gradient (PFG)‐NMR suggests a selective decrease of the anions’ diffusivity at high temperatures, translating into a marginal increase of the Li<jats:sup>+</jats:sup> transference number. Although the transport properties are only marginally affected, addition of moderate amounts of LATP to polymer electrolytes enhances their mechanical properties, thus improving the plating/stripping performance and processability.</jats:p>