Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Schuhmacher, Jörg

  • Google
  • 1
  • 11
  • 10

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Transport Properties and Local Ions Dynamics in LATP‐Based Hybrid Solid Electrolytes10citations

Places of action

Chart of shared publication
Armand, Michel
1 / 15 shared
Forsyth, Maria
1 / 42 shared
Martinezibañez, María
1 / 1 shared
Guerfi, Abdelbast
1 / 8 shared
Roters, Andreas
1 / 1 shared
Gunathilaka, Isuru E.
1 / 1 shared
Boaretto, Nicola
1 / 4 shared
Amo, Juan Miguel López Del
1 / 1 shared
Meabe, Leire
1 / 4 shared
Perezfurundarena, Haritz
1 / 1 shared
Ghorbanzade, Pedram
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Armand, Michel
  • Forsyth, Maria
  • Martinezibañez, María
  • Guerfi, Abdelbast
  • Roters, Andreas
  • Gunathilaka, Isuru E.
  • Boaretto, Nicola
  • Amo, Juan Miguel López Del
  • Meabe, Leire
  • Perezfurundarena, Haritz
  • Ghorbanzade, Pedram
OrganizationsLocationPeople

article

Transport Properties and Local Ions Dynamics in LATP‐Based Hybrid Solid Electrolytes

  • Armand, Michel
  • Forsyth, Maria
  • Martinezibañez, María
  • Guerfi, Abdelbast
  • Roters, Andreas
  • Schuhmacher, Jörg
  • Gunathilaka, Isuru E.
  • Boaretto, Nicola
  • Amo, Juan Miguel López Del
  • Meabe, Leire
  • Perezfurundarena, Haritz
  • Ghorbanzade, Pedram
Abstract

<jats:title>Abstract</jats:title><jats:p>Hybrid solid electrolytes (HSEs), namely mixtures of polymer and inorganic electrolytes, have supposedly improved properties with respect to inorganic and polymer electrolytes. In practice, HSEs often show ionic conductivity below expectations, as the high interface resistance limits the contribution of inorganic electrolyte particles to the charge transport process. In this study, the transport properties of a series of HSEs containing Li<jats:sub>(1+</jats:sub><jats:italic><jats:sub>x</jats:sub></jats:italic><jats:sub>)</jats:sub>Al<jats:italic><jats:sub>x</jats:sub></jats:italic>Ti<jats:sub>(2–</jats:sub><jats:italic><jats:sub>x</jats:sub></jats:italic><jats:sub>)</jats:sub>(PO<jats:sub>4</jats:sub>)<jats:sub>3</jats:sub> (LATP) as Li<jats:sup>+</jats:sup>‐conducting filler are analyzed. The occurrence of Li<jats:sup>+</jats:sup> exchange across the two phases is proved by isotope exchange experiment, coupled with <jats:sup>6</jats:sup>Li/<jats:sup>7</jats:sup>Li nuclear magnetic resonance (NMR), and by 2D <jats:sup>6</jats:sup>Li exchange spectroscopy (EXSY), which gives a time constant for Li<jats:sup>+</jats:sup> exchange of about 50 ms at 60 °C. Electrochemical impedance spectroscopy (EIS) distinguishes a short‐range and a long‐range conductivity, the latter decreasing with LATP concentration. LATP particles contribute to the overall conductivity only at high temperatures and at high LATP concentrations. Pulsed field gradient (PFG)‐NMR suggests a selective decrease of the anions’ diffusivity at high temperatures, translating into a marginal increase of the Li<jats:sup>+</jats:sup> transference number. Although the transport properties are only marginally affected, addition of moderate amounts of LATP to polymer electrolytes enhances their mechanical properties, thus improving the plating/stripping performance and processability.</jats:p>

Topics
  • polymer
  • phase
  • experiment
  • mass spectrometry
  • electrochemical-induced impedance spectroscopy
  • diffusivity
  • Nuclear Magnetic Resonance spectroscopy