Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Maisuradze, Mariam

  • Google
  • 2
  • 10
  • 48

University of Bologna

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Role of the Microstructure in the Li-Storage Performance of Spinel-Structured High-Entropy (Mn,Fe,Co,Ni,Zn) Oxide Nanofibers4citations
  • 2023Charge Storage Mechanism in Electrospun Spinel‐Structured High‐Entropy (Mn<sub>0.2</sub>Fe<sub>0.2</sub>Co<sub>0.2</sub>Ni<sub>0.2</sub>Zn<sub>0.2</sub>)<sub>3</sub>O<sub>4</sub> Oxide Nanofibers as Anode Material for Li‐Ion Batteries44citations

Places of action

Chart of shared publication
Giorgetti, Marco
2 / 4 shared
Pinna, Nicola
2 / 24 shared
Li, Min
2 / 10 shared
Santangelo, Saveria
2 / 17 shared
Noto, Vito Di
2 / 8 shared
Pagot, Gioele
2 / 8 shared
Aquilanti, Giuliana
2 / 13 shared
Liu, Yanchen
2 / 2 shared
Ponti, Alessandro
2 / 6 shared
Triolo, Claudia
2 / 12 shared
Chart of publication period
2024
2023

Co-Authors (by relevance)

  • Giorgetti, Marco
  • Pinna, Nicola
  • Li, Min
  • Santangelo, Saveria
  • Noto, Vito Di
  • Pagot, Gioele
  • Aquilanti, Giuliana
  • Liu, Yanchen
  • Ponti, Alessandro
  • Triolo, Claudia
OrganizationsLocationPeople

article

Charge Storage Mechanism in Electrospun Spinel‐Structured High‐Entropy (Mn<sub>0.2</sub>Fe<sub>0.2</sub>Co<sub>0.2</sub>Ni<sub>0.2</sub>Zn<sub>0.2</sub>)<sub>3</sub>O<sub>4</sub> Oxide Nanofibers as Anode Material for Li‐Ion Batteries

  • Giorgetti, Marco
  • Maisuradze, Mariam
  • Pinna, Nicola
  • Li, Min
  • Santangelo, Saveria
  • Noto, Vito Di
  • Pagot, Gioele
  • Aquilanti, Giuliana
  • Liu, Yanchen
  • Ponti, Alessandro
  • Triolo, Claudia
Abstract

<jats:title>Abstract</jats:title><jats:p>High‐entropy oxides (HEOs) have emerged as promising anode materials for next‐generation lithium‐ion batteries (LIBs). Among them, spinel HEOs with vacant lattice sites allowing for lithium insertion and diffusion seem particularly attractive. In this work, electrospun oxygen‐deficient (Mn,Fe,Co,Ni,Zn) HEO nanofibers are produced under environmentally friendly calcination conditions and evaluated as anode active material in LIBs. A thorough investigation of the material properties and Li<jats:sup>+</jats:sup> storage mechanism is carried out by several analytical techniques, including ex situ synchrotron X‐ray absorption spectroscopy. The lithiation process is elucidated in terms of lithium insertion, cation migration, and metal‐forming conversion reaction. The process is not fully reversible and the reduction of cations to the metallic form is not complete. In particular, iron, cobalt, and nickel, initially present mainly as Fe<jats:sup>3+</jats:sup>, Co<jats:sup>3+</jats:sup>/Co<jats:sup>2+</jats:sup>, and Ni<jats:sup>2+</jats:sup>, undergo reduction to Fe<jats:sup>0</jats:sup>, Co<jats:sup>0</jats:sup>, and Ni<jats:sup>0</jats:sup> to different extent (Fe &lt; Co &lt; Ni). Manganese undergoes partial reduction to Mn<jats:sup>3+</jats:sup>/Mn<jats:sup>2+</jats:sup> and, upon re‐oxidation, does not revert to the pristine oxidation state (+4). Zn<jats:sup>2+</jats:sup> cations do not electrochemically participate in the conversion reaction, but migrating from tetrahedral to octahedral positions, they facilitate Li‐ion transport within lattice channels opened by their migration. Partially reversible crystal phase transitions are observed.</jats:p>

Topics
  • impedance spectroscopy
  • nickel
  • phase
  • Oxygen
  • phase transition
  • forming
  • cobalt
  • Lithium
  • iron
  • Manganese