Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

George, Antony

  • Google
  • 19
  • 84
  • 331

Friedrich Schiller University Jena

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (19/19 displayed)

  • 2023Structural and electronic properties of MoS2 and MoSe2 monolayers grown by chemical vapor deposition on Au(111)†9citations
  • 2023Atomic-scale characterization of contact interfaces between thermally self-assembled Au islands and few-layer MoS2 surfaces on SiO23citations
  • 2023High‐Performance Monolayer MoS 2 Field‐Effect Transistors on Cyclic Olefin Copolymer‐Passivated SiO 2 Gate Dielectric10citations
  • 2023Regulating Li‐Ion Transport through Ultrathin Molecular Membrane to Enable High‐Performance All‐Solid‐State–Battery12citations
  • 2023Regulating Li‐Ion Transport through Ultrathin Molecular Membrane to Enable High‐Performance All‐Solid‐State–Battery12citations
  • 2022Exciton spectroscopy and diffusion in MoSe2-WSe2 lateral heterostructures encapsulated in hexagonal boron nitridecitations
  • 2022Exciton spectroscopy and diffusion in MoSe2-WSe2 lateral heterostructures encapsulated in hexagonal boron nitridecitations
  • 2022Patterned Growth of Transition Metal Dichalcogenide Monolayers and Multilayers for Electronic and Optoelectronic Device Applications.citations
  • 2022Patterned Growth of Transition Metal Dichalcogenide Monolayers and Multilayers for Electronic and Optoelectronic Device Applications15citations
  • 2022Chemical Vapor Deposition of High‐Optical‐Quality Large‐Area Monolayer Janus Transition Metal Dichalcogenides40citations
  • 2022Chemical Vapor Deposition of High‐Optical‐Quality Large‐Area Monolayer Janus Transition Metal Dichalcogenides40citations
  • 20211D p–n Junction Electronic and Optoelectronic Devices from Transition Metal Dichalcogenide Lateral Heterostructures Grown by One‐Pot Chemical Vapor Deposition Synthesis62citations
  • 2021Wafer scale synthesis of organic semiconductor nanosheets for van der Waals heterojunction devices8citations
  • 2020Scalable functionalization of optical fibers using atomically thin semiconductorscitations
  • 2020Scalable functionalization of optical fibers using atomically thin semiconductors37citations
  • 2019Accessing high optical quality of MoS2 monolayers grown by chemical vapor depositioncitations
  • 2018Lateral heterostructures of two-dimensional materials by electron-beam induced stitching28citations
  • 2014Patterning of Epitaxial Perovskites from Micro and Nano Molded Stencil Masks10citations
  • 2010Microstructure and field emission characteristics of ZnO nanoneedles grown by physical vapor deposition45citations

Places of action

Chart of shared publication
Otto, Felix
1 / 13 shared
Gan, Ziyang
10 / 10 shared
Picker, Julian
5 / 5 shared
Turchanin, Andrey
13 / 28 shared
Schaal, Maximilian
1 / 4 shared
Gruenewald, Marco
1 / 7 shared
Forker, Roman
1 / 11 shared
Neumann, Christof
9 / 13 shared
Fritz, Torsten
1 / 15 shared
Kruk, Adam
1 / 5 shared
Cempura, Grzegorz
1 / 9 shared
Lee, Frank
1 / 3 shared
Dalton, Alan B.
1 / 15 shared
Janas, Arkadiusz
1 / 4 shared
Gnecco, Enrico
1 / 8 shared
Jany, Benedykt R.
1 / 3 shared
Krok, Franciszek
1 / 18 shared
Tripathi, Manoj
1 / 9 shared
Najafidehaghani, Emad
8 / 8 shared
Lichtenegger, Michael F.
1 / 1 shared
Drewniok, Jan
1 / 1 shared
Nickel, Bert
2 / 11 shared
Hübner, Uwe
5 / 5 shared
Urban, Alexander S.
1 / 8 shared
Kalkan, Sirri Batuhan
2 / 2 shared
Rajendran, Sathish
2 / 2 shared
Tang, Zian
2 / 2 shared
Arava, Leela Mohana Reddy
1 / 1 shared
Estrada-Real, Ana
2 / 2 shared
Taniguchi, Takashi
3 / 58 shared
Paradisanos, Ioannis
3 / 4 shared
Paillard, Vincent
1 / 5 shared
Beret, Dorian
1 / 1 shared
Urbaszek, Bernhard
3 / 3 shared
Lagarde, Delphine
1 / 2 shared
Marie, Xavier
3 / 18 shared
Lombez, Laurent
1 / 11 shared
Lehnert, Tibor
2 / 4 shared
Biskupek, Johannes
3 / 18 shared
Watanabe, Kenji
3 / 49 shared
Kaiser, Ute
4 / 50 shared
Shree, Shivangi
1 / 1 shared
Poumirol, Jean-Marie
1 / 2 shared
Dehaghani, Emad Naja
1 / 1 shared
Renucci, Pierre
1 / 7 shared
Shradha, Sai
2 / 2 shared
Eilenberger, Falk
4 / 6 shared
Vogl, Tobias
3 / 3 shared
Han, Seung Heon
2 / 2 shared
Abtahi, Fatemeh
2 / 2 shared
Mundszinger, Manuel
2 / 5 shared
Leiter, Robert
2 / 4 shared
Davies, Francis
2 / 2 shared
Wiecha, Peter
2 / 3 shared
Krasheninnikov, Arkady V.
2 / 17 shared
Robert, Cedric
2 / 2 shared
Estradareal, Ana
1 / 1 shared
Ngo, Gia Quyet
2 / 3 shared
Staude, Isabelle
1 / 6 shared
Kaiser, David
1 / 1 shared
Bucher, Tobias
2 / 4 shared
Apfelbeck, Fabian Alexander Christian
1 / 1 shared
Saravi, Sina
1 / 1 shared
Geib, Nils C.
1 / 1 shared
Knopf, Heiko
1 / 3 shared
Schmidt, Markus A.
1 / 8 shared
Pertsch, Thomas
1 / 4 shared
Warrensmith, Stephen C.
1 / 1 shared
Tuniz, Alessandro
1 / 3 shared
Ebendorffheidepriem, Heike
1 / 2 shared
Schock, Robin Tristan Klaus
1 / 1 shared
Schartner, Erik P.
1 / 2 shared
Lühder, Tilman
1 / 1 shared
Houwman, Evert P.
1 / 3 shared
Koster, Gertjan
1 / 31 shared
Rijnders, Guus
1 / 20 shared
Blank, Dave H. A.
1 / 5 shared
Nijland, Maarten
1 / 3 shared
Thomas, Sean
1 / 2 shared
Elshof, Johan E. Ten
1 / 6 shared
Mclaughlin, James
1 / 27 shared
Soin, Navneet
1 / 7 shared
Kumari, P.
1 / 6 shared
Roy, Susanta Sinha
1 / 14 shared
Chart of publication period
2023
2022
2021
2020
2019
2018
2014
2010

Co-Authors (by relevance)

  • Otto, Felix
  • Gan, Ziyang
  • Picker, Julian
  • Turchanin, Andrey
  • Schaal, Maximilian
  • Gruenewald, Marco
  • Forker, Roman
  • Neumann, Christof
  • Fritz, Torsten
  • Kruk, Adam
  • Cempura, Grzegorz
  • Lee, Frank
  • Dalton, Alan B.
  • Janas, Arkadiusz
  • Gnecco, Enrico
  • Jany, Benedykt R.
  • Krok, Franciszek
  • Tripathi, Manoj
  • Najafidehaghani, Emad
  • Lichtenegger, Michael F.
  • Drewniok, Jan
  • Nickel, Bert
  • Hübner, Uwe
  • Urban, Alexander S.
  • Kalkan, Sirri Batuhan
  • Rajendran, Sathish
  • Tang, Zian
  • Arava, Leela Mohana Reddy
  • Estrada-Real, Ana
  • Taniguchi, Takashi
  • Paradisanos, Ioannis
  • Paillard, Vincent
  • Beret, Dorian
  • Urbaszek, Bernhard
  • Lagarde, Delphine
  • Marie, Xavier
  • Lombez, Laurent
  • Lehnert, Tibor
  • Biskupek, Johannes
  • Watanabe, Kenji
  • Kaiser, Ute
  • Shree, Shivangi
  • Poumirol, Jean-Marie
  • Dehaghani, Emad Naja
  • Renucci, Pierre
  • Shradha, Sai
  • Eilenberger, Falk
  • Vogl, Tobias
  • Han, Seung Heon
  • Abtahi, Fatemeh
  • Mundszinger, Manuel
  • Leiter, Robert
  • Davies, Francis
  • Wiecha, Peter
  • Krasheninnikov, Arkady V.
  • Robert, Cedric
  • Estradareal, Ana
  • Ngo, Gia Quyet
  • Staude, Isabelle
  • Kaiser, David
  • Bucher, Tobias
  • Apfelbeck, Fabian Alexander Christian
  • Saravi, Sina
  • Geib, Nils C.
  • Knopf, Heiko
  • Schmidt, Markus A.
  • Pertsch, Thomas
  • Warrensmith, Stephen C.
  • Tuniz, Alessandro
  • Ebendorffheidepriem, Heike
  • Schock, Robin Tristan Klaus
  • Schartner, Erik P.
  • Lühder, Tilman
  • Houwman, Evert P.
  • Koster, Gertjan
  • Rijnders, Guus
  • Blank, Dave H. A.
  • Nijland, Maarten
  • Thomas, Sean
  • Elshof, Johan E. Ten
  • Mclaughlin, James
  • Soin, Navneet
  • Kumari, P.
  • Roy, Susanta Sinha
OrganizationsLocationPeople

article

Regulating Li‐Ion Transport through Ultrathin Molecular Membrane to Enable High‐Performance All‐Solid‐State–Battery

  • Rajendran, Sathish
  • George, Antony
  • Turchanin, Andrey
  • Tang, Zian
  • Neumann, Christof
Abstract

<jats:title>Abstract</jats:title><jats:p>Solid‐state lithium metal batteries with garnet‐type electrolyte provide several advantages over conventional lithium‐ion batteries, especially for safety and energy density. However, a few grand challenges such as the propagation of Li dendrites, poor interfacial contact between the solid electrolyte and the electrodes, and formation of lithium carbonate during ambient exposure over the solid‐state electrolyte prevent the viability of such batteries. Herein, an ultrathin sub‐nanometer porous carbon nanomembrane (CNM) is employed on the surface of solid‐state electrolyte (SSE) that increases the adhesion of SSE with electrodes, prevents lithium carbonate formation over the surface, regulates the flow of Li‐ions, and blocks any electronic leakage. The sub‐nanometer scale pores in CNM allow rapid permeation of Li‐ions across the electrode–electrolyte interface without the presence of any liquid medium. Additionally, CNM suppresses the propagation of Li dendrites by over sevenfold up to a current density of 0.7 mA cm<jats:sup>−2</jats:sup> and enables the cycling of all‐solid‐state batteries at low stack pressure of 2 MPa using LiFePO<jats:sub>4</jats:sub> cathode and Li metal anode. The CNM provides chemical stability to the solid electrolyte for over 4 weeks of ambient exposure with less than a 4% increase in surface impurities.</jats:p>

Topics
  • porous
  • density
  • impedance spectroscopy
  • pore
  • surface
  • Carbon
  • energy density
  • laser emission spectroscopy
  • chemical stability
  • Lithium
  • current density