People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Neumann, Christof
Friedrich Schiller University Jena
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2023Structural and electronic properties of MoS2 and MoSe2 monolayers grown by chemical vapor deposition on Au(111)†citations
- 2023Diglyme-based gel polymer electrolytes for K-ion capacitorscitations
- 2023Regulating Li‐Ion Transport through Ultrathin Molecular Membrane to Enable High‐Performance All‐Solid‐State–Batterycitations
- 2023Regulating Li‐Ion Transport through Ultrathin Molecular Membrane to Enable High‐Performance All‐Solid‐State–Batterycitations
- 2022Patterned Growth of Transition Metal Dichalcogenide Monolayers and Multilayers for Electronic and Optoelectronic Device Applications.
- 2022Patterned Growth of Transition Metal Dichalcogenide Monolayers and Multilayers for Electronic and Optoelectronic Device Applicationscitations
- 2022Chemical Vapor Deposition of High‐Optical‐Quality Large‐Area Monolayer Janus Transition Metal Dichalcogenidescitations
- 2022Chemical Vapor Deposition of High‐Optical‐Quality Large‐Area Monolayer Janus Transition Metal Dichalcogenidescitations
- 20211D p–n Junction Electronic and Optoelectronic Devices from Transition Metal Dichalcogenide Lateral Heterostructures Grown by One‐Pot Chemical Vapor Deposition Synthesiscitations
- 2020Identification of semiconductive patches in thermally processed monolayer oxo‐functionalized graphene
- 2020Scalable functionalization of optical fibers using atomically thin semiconductorscitations
- 2016Fundamental properties of high-quality carbon nanofoam: from low to high densitycitations
- 2016Fundamental properties of high-quality carbon nanofoam: from low to high densitycitations
Places of action
Organizations | Location | People |
---|
article
Regulating Li‐Ion Transport through Ultrathin Molecular Membrane to Enable High‐Performance All‐Solid‐State–Battery
Abstract
<jats:title>Abstract</jats:title><jats:p>Solid‐state lithium metal batteries with garnet‐type electrolyte provide several advantages over conventional lithium‐ion batteries, especially for safety and energy density. However, a few grand challenges such as the propagation of Li dendrites, poor interfacial contact between the solid electrolyte and the electrodes, and formation of lithium carbonate during ambient exposure over the solid‐state electrolyte prevent the viability of such batteries. Herein, an ultrathin sub‐nanometer porous carbon nanomembrane (CNM) is employed on the surface of solid‐state electrolyte (SSE) that increases the adhesion of SSE with electrodes, prevents lithium carbonate formation over the surface, regulates the flow of Li‐ions, and blocks any electronic leakage. The sub‐nanometer scale pores in CNM allow rapid permeation of Li‐ions across the electrode–electrolyte interface without the presence of any liquid medium. Additionally, CNM suppresses the propagation of Li dendrites by over sevenfold up to a current density of 0.7 mA cm<jats:sup>−2</jats:sup> and enables the cycling of all‐solid‐state batteries at low stack pressure of 2 MPa using LiFePO<jats:sub>4</jats:sub> cathode and Li metal anode. The CNM provides chemical stability to the solid electrolyte for over 4 weeks of ambient exposure with less than a 4% increase in surface impurities.</jats:p>