Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Chirita Mihaila, Alexandru Ionut

  • Google
  • 1
  • 8
  • 25

University of Vienna

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Creation of Single Vacancies in hBN with Electron Irradiation25citations

Places of action

Chart of shared publication
Leuthner, Gregor
1 / 1 shared
Postl, Andreas
1 / 2 shared
Kotakoski, Jani
1 / 16 shared
Mangler, Clemens
1 / 15 shared
Monazam, Mohammad R. A.
1 / 3 shared
Madsen, Jacob
1 / 4 shared
Susi, Toma
1 / 12 shared
Bui, Thuy An
1 / 2 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Leuthner, Gregor
  • Postl, Andreas
  • Kotakoski, Jani
  • Mangler, Clemens
  • Monazam, Mohammad R. A.
  • Madsen, Jacob
  • Susi, Toma
  • Bui, Thuy An
OrganizationsLocationPeople

article

Creation of Single Vacancies in hBN with Electron Irradiation

  • Leuthner, Gregor
  • Postl, Andreas
  • Kotakoski, Jani
  • Chirita Mihaila, Alexandru Ionut
  • Mangler, Clemens
  • Monazam, Mohammad R. A.
  • Madsen, Jacob
  • Susi, Toma
  • Bui, Thuy An
Abstract

<jats:title>Abstract</jats:title><jats:p>Understanding electron irradiation effects is vital not only for reliable transmission electron microscopy characterization, but increasingly also for the controlled manipulation of 2D materials. The displacement cross sections of monolayer hexagonal boron nitride (hBN) are measured using aberration‐corrected scanning transmission electron microscopy in near ultra‐high vacuum at primary beam energies between 50 and 90 keV. Damage rates below 80 keV are up to three orders of magnitude lower than previously measured at edges under poorer residual vacuum conditions, where chemical etching appears to dominate. Notably, it is possible to create single vacancies in hBN using electron irradiation, with boron almost twice as likely as nitrogen to be ejected below 80 keV. Moreover, any damage at such low energies cannot be explained by elastic knock‐on, even when accounting for the vibrations of the atoms. A theoretical description is developed to account for the lowering of the displacement threshold due to valence ionization resulting from inelastic scattering of probe electrons, modeled using charge‐constrained density functional theory molecular dynamics. Although significant reductions are found depending on the constrained charge, quantitative predictions for realistic ionization states are currently not possible. Nonetheless, there is potential for defect‐engineering of hBN at the level of single vacancies using electron irradiation.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • theory
  • molecular dynamics
  • Nitrogen
  • nitride
  • transmission electron microscopy
  • etching
  • defect
  • density functional theory
  • Boron