People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mangler, Clemens
University of Vienna
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2024Grain-Size-Dependent Plastic Behavior in Bulk Nanocrystalline FeAl
- 2023Interface effects on titanium growth on graphenecitations
- 2023Creation of Single Vacancies in hBN with Electron Irradiationcitations
- 2021The morphology of doubly-clamped graphene nanoribbons
- 2014Nitrogen controlled iron catalyst phase during carbon nanotube growthcitations
- 2012Radiation effects in bulk nanocrystalline FeAl alloycitations
- 2012Spinodal decomposition in (CaxBa1-x)(y)Fe4Sb12citations
- 2011Growth of nanosized chemically ordered domains in intermetallic FeAl made nanocrystalline by severe plastic deformationcitations
- 2011Three-Dimensional Analysis by Electron Diffraction Methods of Nanocrystalline Materialscitations
- 2011Thermally induced transition from a ferromagnetic to a paramagnetic state in nanocrystalline FeAl processed by high-pressure torsioncitations
- 2010Electron microscopy of severely deformed L12 intermetallicscitations
- 2010Quantitative local profile analysis of nanomaterials by electron diffractioncitations
- 2010Structural modifications during heating of bulk nanocrystalline FeAl produced by high-pressure torsioncitations
- 2008TEM study of local disordering: a structural phase change induced by high-pressure torsioncitations
- 2004Nanostructures in L12-ordered Cu3Au processed by torsion under high pressurecitations
Places of action
Organizations | Location | People |
---|
article
Creation of Single Vacancies in hBN with Electron Irradiation
Abstract
<jats:title>Abstract</jats:title><jats:p>Understanding electron irradiation effects is vital not only for reliable transmission electron microscopy characterization, but increasingly also for the controlled manipulation of 2D materials. The displacement cross sections of monolayer hexagonal boron nitride (hBN) are measured using aberration‐corrected scanning transmission electron microscopy in near ultra‐high vacuum at primary beam energies between 50 and 90 keV. Damage rates below 80 keV are up to three orders of magnitude lower than previously measured at edges under poorer residual vacuum conditions, where chemical etching appears to dominate. Notably, it is possible to create single vacancies in hBN using electron irradiation, with boron almost twice as likely as nitrogen to be ejected below 80 keV. Moreover, any damage at such low energies cannot be explained by elastic knock‐on, even when accounting for the vibrations of the atoms. A theoretical description is developed to account for the lowering of the displacement threshold due to valence ionization resulting from inelastic scattering of probe electrons, modeled using charge‐constrained density functional theory molecular dynamics. Although significant reductions are found depending on the constrained charge, quantitative predictions for realistic ionization states are currently not possible. Nonetheless, there is potential for defect‐engineering of hBN at the level of single vacancies using electron irradiation.</jats:p>