Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Menezes, Prashanth W.

  • Google
  • 14
  • 45
  • 80

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (14/14 displayed)

  • 2024Hydrogen‐Induced Disproportionation of Samarium‐Cobalt Intermetallics Enabling Promoted Hydrogen Evolution Reaction Activity and Durability in Alkaline Mediacitations
  • 2024Intermetallic Cobalt Indium Nanoparticles as Oxygen Evolution Reaction Precatalyst: A Non‐Leaching p‐Block Elementcitations
  • 2024In Situ Reconstruction of Helical Iron Borophosphate Precatalyst toward Durable Industrial Alkaline Water Electrolysis and Selective Oxidation of Alcoholscitations
  • 2023A Facile Molecular Approach to Amorphous Nickel Pnictides and Their Reconstruction to Crystalline Potassium‐Intercalated γ‐NiOOH<sub><i>x</i></sub> Enabling High‐Performance Electrocatalytic Water Oxidation and Selective Oxidation of 5‐Hydroxymethylfurfural25citations
  • 2023In Situ Reconstruction of Helical Iron Borophosphate Precatalyst toward Durable Industrial Alkaline Water Electrolysis and Selective Oxidation of Alcohols24citations
  • 2023Evolution of Carbonate‐Intercalated γ‐NiOOH from a Molecularly Derived Nickel Sulfide (Pre)Catalyst for Efficient Water and Selective Organic Oxidation31citations
  • 2022Nanostructured Intermetallic Nickel Silicide (Pre)Catalyst for Anodic Oxygen Evolution Reaction and Selective Dehydrogenation of Primary Aminescitations
  • 2022An Intermetallic CaFe6Ge6 Approach to Unprecedented Ca−Fe−O Electrocatalyst for Efficient Alkaline Oxygen Evolution Reactioncitations
  • 2021Evolving Highly Active Oxidic Iron(III) Phase from Corrosion of Intermetallic Iron Silicide to Master Efficient Electrocatalytic Water Oxidation and Selective Oxygenation of 5-Hydroxymethylfurfuralcitations
  • 2021Intermetallic Fe6Ge5 formation and decay of a core–shell structure during the oxygen evolution reactioncitations
  • 2020A Low‐Temperature Molecular Precursor Approach to Copper‐Based Nano‐Sized Digenite Mineral for Efficient Electrocatalytic Oxygen Evolution Reactioncitations
  • 2020Enabling Iron‐Based Highly Effective Electrochemical Water‐Splitting and Selective Oxygenation of Organic Substrates through In Situ Surface Modification of Intermetallic Iron Stannide Precatalystcitations
  • 2020Crystalline Copper Selenide as a Reliable Non‐Noble Electro(pre)catalyst for Overall Water Splittingcitations
  • 2020Boosting water oxidation through in situ electroconversion of manganese gallide: an intermetallic precursor approachcitations

Places of action

Chart of shared publication
Mondal, Indranil
4 / 5 shared
Driess, Matthias
12 / 17 shared
Ghosh, Suptish
4 / 5 shared
Mebs, Stefan
4 / 11 shared
Haumann, Michael
2 / 6 shared
Dau, Holger
4 / 11 shared
Yang, Hongyuan
4 / 5 shared
Chen, Ziliang
3 / 4 shared
Kang, Zhenhui
1 / 2 shared
Cen, Wanglai
1 / 2 shared
Selve, Sören
1 / 7 shared
Ashton, Marten
1 / 1 shared
Walter, Carsten
3 / 3 shared
Hausmann, J. Niklas
8 / 8 shared
Drieß, Matthias
2 / 3 shared
Sontheimer, Tobias
1 / 1 shared
Laun, Konstantin
5 / 10 shared
Vijaykumar, Gonela
3 / 4 shared
Zebger, Ingo
5 / 14 shared
Nicolaus, Victor C. J.
2 / 2 shared
Kalra, Shweta
3 / 4 shared
Beltránsuito, Rodrigo
4 / 5 shared
Dasgupta, Basundhara
2 / 3 shared
Hausmann, Jan Niklas
2 / 4 shared
Alonso, Eduardo Garcia
1 / 1 shared
Gok, Sena
1 / 1 shared
Yang, Ruotao
1 / 1 shared
Ashton, Marten L. P.
1 / 1 shared
Kueppers, Christopher J.
1 / 1 shared
Schmidt, Johannes
2 / 5 shared
Hlukhyy, Viktor
3 / 8 shared
Braun, Thomas
1 / 7 shared
Beltrán-Suito, Rodrigo
2 / 2 shared
Fässler, Thomas F.
1 / 9 shared
Shevelkov, Andrei V.
2 / 9 shared
Khalaniya, Roman A.
1 / 1 shared
Berendts, Stefan
1 / 7 shared
Remy-Speckmann, Ina
1 / 2 shared
Das, Chittaranjan
2 / 8 shared
Hellmann, Tim
1 / 3 shared
Chakraborty, Biswarup
3 / 5 shared
Garai, Somenath
1 / 1 shared
Valeriy, Yu. Verchenko
1 / 1 shared
Schlesiger, Christopher
1 / 1 shared
Praetz, Sebastian
1 / 3 shared
Chart of publication period
2024
2023
2022
2021
2020

Co-Authors (by relevance)

  • Mondal, Indranil
  • Driess, Matthias
  • Ghosh, Suptish
  • Mebs, Stefan
  • Haumann, Michael
  • Dau, Holger
  • Yang, Hongyuan
  • Chen, Ziliang
  • Kang, Zhenhui
  • Cen, Wanglai
  • Selve, Sören
  • Ashton, Marten
  • Walter, Carsten
  • Hausmann, J. Niklas
  • Drieß, Matthias
  • Sontheimer, Tobias
  • Laun, Konstantin
  • Vijaykumar, Gonela
  • Zebger, Ingo
  • Nicolaus, Victor C. J.
  • Kalra, Shweta
  • Beltránsuito, Rodrigo
  • Dasgupta, Basundhara
  • Hausmann, Jan Niklas
  • Alonso, Eduardo Garcia
  • Gok, Sena
  • Yang, Ruotao
  • Ashton, Marten L. P.
  • Kueppers, Christopher J.
  • Schmidt, Johannes
  • Hlukhyy, Viktor
  • Braun, Thomas
  • Beltrán-Suito, Rodrigo
  • Fässler, Thomas F.
  • Shevelkov, Andrei V.
  • Khalaniya, Roman A.
  • Berendts, Stefan
  • Remy-Speckmann, Ina
  • Das, Chittaranjan
  • Hellmann, Tim
  • Chakraborty, Biswarup
  • Garai, Somenath
  • Valeriy, Yu. Verchenko
  • Schlesiger, Christopher
  • Praetz, Sebastian
OrganizationsLocationPeople

article

A Facile Molecular Approach to Amorphous Nickel Pnictides and Their Reconstruction to Crystalline Potassium‐Intercalated γ‐NiOOH<sub><i>x</i></sub> Enabling High‐Performance Electrocatalytic Water Oxidation and Selective Oxidation of 5‐Hydroxymethylfurfural

  • Laun, Konstantin
  • Kalra, Shweta
  • Driess, Matthias
  • Beltránsuito, Rodrigo
  • Dasgupta, Basundhara
  • Zebger, Ingo
  • Hausmann, Jan Niklas
  • Menezes, Prashanth W.
Abstract

<jats:title>Abstract</jats:title><jats:p>The low‐temperature molecular precursor approach can be beneficial to conventional solid‐state methods, which require high temperatures and lead to relatively large crystalline particles. Herein, a novel, single‐step, room‐temperature preparation of amorphous nickel pnictide (NiE; EP, As) nanomaterials is reported, starting from NaOCE(dioxane)<jats:sub><jats:italic>n</jats:italic></jats:sub> and NiBr<jats:sub>2</jats:sub>(thf)<jats:sub>1.5</jats:sub>. During application for the oxygen evolution reaction (OER), the pnictide anions leach, and both materials fully reconstruct into nickel(III/IV) oxide phases (similar to γ‐NiOOH) comprising edge‐sharing (NiO<jats:sub>6</jats:sub>) layers with intercalated potassium ions and a <jats:italic>d</jats:italic>‐spacing of 7.27 Å. Remarkably, the intercalated γ‐NiOOH<jats:sub><jats:italic>x</jats:italic></jats:sub> phases are nanocrystalline, unlike the amorphous nickel pnictide precatalysts. This unconventional reconstruction is fast and complete, which is ascribed to the amorphous nature of the nanostructured NiE precatalysts. The obtained γ‐NiOOH<jats:sub><jats:italic>x</jats:italic></jats:sub> can effectively catalyse the OER for 100 h at a high current density (400 mA cm<jats:sup>−2</jats:sup>) and achieves outstandingly high current densities (&gt;600 mA cm<jats:sup>−2</jats:sup>) for the selective, value‐added oxidation of 5‐hydroxymethylfurfural (HMF). The NiP‐derived γ‐NiOOH<jats:sub><jats:italic>x</jats:italic></jats:sub> shows a higher activity for both processes due to more available active sites. It is anticipated that the herein developed, effective, room‐temperature molecular synthesis of amorphous nickel pnictide nanomaterials can be applied to other functional transition‐metal pnictides.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • amorphous
  • nickel
  • phase
  • Oxygen
  • Potassium
  • current density