Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Moon, Sunil

  • Google
  • 2
  • 10
  • 59

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Reconfiguring the Electronic Structure of Heteroatom Doped Carbon Supported Bimetallic Oxide@Metal Sulfide Core–Shell Heterostructure via In Situ Nb Incorporation toward Extrinsic Pseudocapacitor32citations
  • 2023Electronic Structure Engineered Heteroatom Doped All Transition Metal Sulfide Carbon Confined Heterostructure for Extrinsic Pseudocapacitor27citations

Places of action

Chart of shared publication
Jun, Seong Chan
2 / 6 shared
Jadhav, Arti A.
2 / 2 shared
Kang, Keonwook
2 / 2 shared
Dubal, Deepak P.
2 / 18 shared
Roy, Sanjib B.
1 / 1 shared
Seo, Youngho
1 / 1 shared
Chodankar, Nilesh R.
1 / 8 shared
Guan, Guoqing
1 / 1 shared
Ha, Jisang
1 / 1 shared
Roy, Sanjib Baran
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Jun, Seong Chan
  • Jadhav, Arti A.
  • Kang, Keonwook
  • Dubal, Deepak P.
  • Roy, Sanjib B.
  • Seo, Youngho
  • Chodankar, Nilesh R.
  • Guan, Guoqing
  • Ha, Jisang
  • Roy, Sanjib Baran
OrganizationsLocationPeople

article

Electronic Structure Engineered Heteroatom Doped All Transition Metal Sulfide Carbon Confined Heterostructure for Extrinsic Pseudocapacitor

  • Jun, Seong Chan
  • Jadhav, Arti A.
  • Chodankar, Nilesh R.
  • Kang, Keonwook
  • Guan, Guoqing
  • Dubal, Deepak P.
  • Moon, Sunil
  • Ha, Jisang
  • Roy, Sanjib Baran
Abstract

<jats:title>Abstract</jats:title><jats:p>Ultra‐high energy density battery‐type materials are promising candidates for supercapacitors (SCs); however, slow ion kinetics and significant volume expansion remain major barriers to their practical applications. To address these issues, hierarchical lattice distorted <jats:italic>α</jats:italic>‐/<jats:italic>γ</jats:italic>‐MnS@Co<jats:sub>x</jats:sub>S<jats:sub>y</jats:sub> core‐shell heterostructure constrained in the sulphur (S), nitrogen (N) co‐doped carbon (C) metal‐organic frameworks (MOFs) derived nanosheets (<jats:italic>α</jats:italic>‐/<jats:italic>γ</jats:italic>‐MnS@Co<jats:sub>x</jats:sub>S<jats:sub>y</jats:sub>@N, SC) have been developed. The coordination bonding among Co<jats:sub>x</jats:sub>S<jats:sub>y</jats:sub>, and <jats:italic>α</jats:italic>‐/<jats:italic>γ</jats:italic>‐MnS nanoparticles at the interfaces and the <jats:italic>π</jats:italic>–<jats:italic>π</jats:italic> stacking interactions developed across <jats:italic>α</jats:italic>‐/<jats:italic>γ</jats:italic>‐MnS@Co<jats:sub>x</jats:sub>S<jats:sub>y</jats:sub> and N, SC restrict volume expansion during cycling. Furthermore, the porous lattice distorted heteroatom‐enriched nanosheets contain a sufficient number of active sites to allow for efficient electron transportation. Density functional theory (DFT) confirms the significant change in electronic states caused by heteroatom doping and the formation of core‐shell structures, which provide more accessible species with excellent interlayer and interparticle conductivity, resulting in increased electrical conductivity. . The <jats:italic>α</jats:italic>‐/<jats:italic>γ</jats:italic>‐MnS@Co<jats:sub>x</jats:sub>S<jats:sub>y</jats:sub>@N, SC electrode exhibits an excellent specific capacity of 277 mA hg<jats:sup>−1</jats:sup> and cycling stability over 23 600 cycles. A quasi‐solid‐state flexible extrinsic pseudocapacitor (QFEPs) assembled using layer‐by‐layer deposited multi‐walled carbon nanotube/Ti<jats:sub>3</jats:sub>C<jats:sub>2</jats:sub>T<jats:sub>X</jats:sub> nanocomposite negative electrode. QFEPs deliver specific energy of 64.8 Wh kg<jats:sup>−1</jats:sup> (1.62 mWh cm<jats:sup>−3</jats:sup>) at a power of 933 W kg<jats:sup>−1</jats:sup> and 92% capacitance retention over 5000 cycles.</jats:p>

Topics
  • nanoparticle
  • porous
  • nanocomposite
  • density
  • Carbon
  • energy density
  • theory
  • nanotube
  • Nitrogen
  • density functional theory
  • electrical conductivity
  • Sulphur