Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bidinakis, Konstantinos

  • Google
  • 1
  • 12
  • 20

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Modification of Two‐Dimensional Tin‐Based Perovskites by Pentanoic Acid for Improved Performance of Field‐Effect Transistors20citations

Places of action

Chart of shared publication
Haese, Constantin
1 / 2 shared
Pisula, Wojciech
1 / 11 shared
Yildiz, Okan
1 / 2 shared
Hasenburg, Franziska H.
1 / 1 shared
Wang, Shuanglong
1 / 2 shared
Graf, Robert
1 / 12 shared
Marszalek, Tomasz
1 / 5 shared
Blom, Paul W. M.
1 / 22 shared
Frisch, Sabine
1 / 1 shared
Kivala, Milan
1 / 2 shared
Ling, Zhitian
1 / 1 shared
Weber, Stefan A. L.
1 / 3 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Haese, Constantin
  • Pisula, Wojciech
  • Yildiz, Okan
  • Hasenburg, Franziska H.
  • Wang, Shuanglong
  • Graf, Robert
  • Marszalek, Tomasz
  • Blom, Paul W. M.
  • Frisch, Sabine
  • Kivala, Milan
  • Ling, Zhitian
  • Weber, Stefan A. L.
OrganizationsLocationPeople

article

Modification of Two‐Dimensional Tin‐Based Perovskites by Pentanoic Acid for Improved Performance of Field‐Effect Transistors

  • Haese, Constantin
  • Pisula, Wojciech
  • Yildiz, Okan
  • Hasenburg, Franziska H.
  • Wang, Shuanglong
  • Bidinakis, Konstantinos
  • Graf, Robert
  • Marszalek, Tomasz
  • Blom, Paul W. M.
  • Frisch, Sabine
  • Kivala, Milan
  • Ling, Zhitian
  • Weber, Stefan A. L.
Abstract

<jats:title>Abstract</jats:title><jats:p>Understanding and controlling the nucleation and crystallization in solution‐processed perovskite thin films are critical to achieving high in‐plane charge carrier transport in field‐effect transistors (FETs). This work demonstrates a simple and effective additive engineering strategy using pentanoic acid (PA). Here, PA is introduced to both modulate the crystallization process and improve the charge carrier transport in 2D 2‐thiopheneethylammonium tin iodide ((TEA)<jats:sub>2</jats:sub>SnI<jats:sub>4</jats:sub>) perovskite FETs. It is revealed that the carboxylic group of PA is strongly coordinated to the spacer cation TEAI and [SnI<jats:sub>6</jats:sub>]<jats:sup>4−</jats:sup> framework in the perovskite precursor solution, inducing heterogeneous nucleation and lowering undesired oxidation of Sn<jats:sup>2+</jats:sup> during the film formation. These factors contribute to a reduced defect density and improved film morphology, including lower surface roughness and larger grain size, resulting in overall enhanced transistor performance. The reduced defect density and decreased ion migration lead to a higher p‐channel charge carrier mobility of 0.7 cm<jats:sup>2</jats:sup> V<jats:sup>−1</jats:sup> s<jats:sup>−1</jats:sup>, which is more than a threefold increase compared with the control device. Temperature‐dependent charge transport studies demonstrate a mobility of 2.3 cm<jats:sup>2</jats:sup> V<jats:sup>−1</jats:sup> s<jats:sup>−1</jats:sup> at 100 K due to the diminished ion mobility at low temperatures. This result illustrates that the additive strategy bears great potential to realize high‐performance Sn‐based perovskite FETs.</jats:p>

Topics
  • density
  • perovskite
  • impedance spectroscopy
  • surface
  • grain
  • grain size
  • mobility
  • thin film
  • defect
  • tin
  • crystallization
  • field-effect transistor method