Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bourret, Gilles R.

  • Google
  • 4
  • 14
  • 114

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2023Charge Separation in BaTiO3 Nanocrystals: Spontaneous Polarization versus Point Defect Chemistry16citations
  • 2020Morphology-Graded Silicon Nanowire Arrays via Chemical Etching53citations
  • 2016Hydration of magnesia cubes: a helium ion microscopy studycitations
  • 2016Modification of Charge Trapping at Particle/Particle Interfaces by Electrochemical Hydrogen Doping of Nanocrystalline TiO245citations

Places of action

Chart of shared publication
Schwab, Thomas
1 / 11 shared
Diwald, Oliver
3 / 14 shared
Musso, Maurizio
2 / 6 shared
Berger, Thomas
2 / 9 shared
Neige, Ellie
1 / 2 shared
Rey, Marcel
1 / 3 shared
Mahdavi, Hossein
1 / 2 shared
Abazari, Mehri
1 / 1 shared
Wendisch, Fedja J.
1 / 1 shared
Vogel, Nicolas
1 / 13 shared
Schwaiger, Ruth
1 / 25 shared
Schneider, Johannes
1 / 48 shared
Jiménez, Juan M.
1 / 1 shared
Mckenna, Keith P.
1 / 8 shared
Chart of publication period
2023
2020
2016

Co-Authors (by relevance)

  • Schwab, Thomas
  • Diwald, Oliver
  • Musso, Maurizio
  • Berger, Thomas
  • Neige, Ellie
  • Rey, Marcel
  • Mahdavi, Hossein
  • Abazari, Mehri
  • Wendisch, Fedja J.
  • Vogel, Nicolas
  • Schwaiger, Ruth
  • Schneider, Johannes
  • Jiménez, Juan M.
  • Mckenna, Keith P.
OrganizationsLocationPeople

article

Charge Separation in BaTiO3 Nanocrystals: Spontaneous Polarization versus Point Defect Chemistry

  • Bourret, Gilles R.
  • Schwab, Thomas
  • Diwald, Oliver
  • Musso, Maurizio
  • Berger, Thomas
  • Neige, Ellie
Abstract

<p>The fate of photogenerated charges within ferroelectric metal oxides is key for photocatalytic applications. The authors study the contributions of i) tetragonal distortion, responsible for spontaneous polarization, and ii) point defects, on charge separation and recombination within BaTiO<sub>3</sub> (BTO) nanocrystals of cubic and tetragonal structure. Electron paramagnetic resonance (EPR) in combination with O<sub>2</sub> photoadsorption experiments show that BTO nanocrystals annealed at 600 °C have a charge separation yield enhanced by a factor &gt; 10 compared to TiO<sub>2</sub> anatase nanocrystals of similar geometries. This demonstrates for the first time the beneficial effect of the BTO perovskite nanocrystal lattice on charge separation. Strikingly, charge separation is considerably hindered within BTO nanoparticles annealed ≥ 600 °C, due to the formation of Ba–O divacancies that act as charge recombination centers. The opposing interplay between tetragonal distortion and annealing-induced defect formation inside the lattice highlights the importance of defect engineering within perovskite nanoparticles.</p>

Topics
  • nanoparticle
  • perovskite
  • impedance spectroscopy
  • experiment
  • electron spin resonance spectroscopy
  • annealing
  • point defect