Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ottaviani, Michela

  • Google
  • 1
  • 7
  • 31

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Lithiophilic Nanowire Guided Li Deposition in Li Metal Batteries31citations

Places of action

Chart of shared publication
Kilian, Seamus
1 / 3 shared
Geaney, Hugh
1 / 10 shared
Thompson, Damien
1 / 2 shared
Ahad, Syed Abdul
1 / 7 shared
Kennedy, Tadhg
1 / 5 shared
Bhattacharya, Shayon
1 / 1 shared
Ryan, Kevin M.
1 / 6 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Kilian, Seamus
  • Geaney, Hugh
  • Thompson, Damien
  • Ahad, Syed Abdul
  • Kennedy, Tadhg
  • Bhattacharya, Shayon
  • Ryan, Kevin M.
OrganizationsLocationPeople

article

Lithiophilic Nanowire Guided Li Deposition in Li Metal Batteries

  • Kilian, Seamus
  • Geaney, Hugh
  • Thompson, Damien
  • Ahad, Syed Abdul
  • Ottaviani, Michela
  • Kennedy, Tadhg
  • Bhattacharya, Shayon
  • Ryan, Kevin M.
Abstract

<jats:title>Abstract</jats:title><jats:p>Lithium (Li) metal batteries (LMBs) provide superior energy densities far beyond current Li‐ion batteries (LIBs) but practical applications are hindered by uncontrolled dendrite formation and the build‐up of dead Li in “hostless” Li metal anodes. To circumvent these issues, we created a 3D framework of a carbon paper (CP) substrate decorated with lithiophilic nanowires (silicon (Si), germanium (Ge), and SiGe alloy NWs) that provides a robust host for efficient stripping/plating of Li metal. The lithiophilic Li<jats:sub>22</jats:sub>Si<jats:sub>5</jats:sub>, Li<jats:sub>22</jats:sub>(Si<jats:sub>0.5</jats:sub>Ge<jats:sub>0.5</jats:sub>)<jats:sub>5,</jats:sub> and Li<jats:sub>22</jats:sub>Ge<jats:sub>5</jats:sub> formed during rapid Li melt infiltration prevented the formation of dead Li and dendrites. Li<jats:sub>22</jats:sub>Ge<jats:sub>5</jats:sub>/Li covered CP hosts delivered the best performance, with the lowest overpotentials of 40 mV (three times lower than pristine Li) when cycled at 1 mA cm<jats:sup>−2</jats:sup>/1 mAh cm<jats:sup>−2</jats:sup> for 1000 h and at 3 mA cm<jats:sup>−2</jats:sup>/3 mAh cm<jats:sup>−2</jats:sup> for 500 h. Ex situ analysis confirmed the ability of the lithiophilic Li<jats:sub>22</jats:sub>Ge<jats:sub>5</jats:sub> decorated samples to facilitate uniform Li deposition. When paired with sulfur, LiFePO<jats:sub>4,</jats:sub> and NMC811 cathodes, the CP‐LiGe/Li anodes delivered 200 cycles with 82%, 93%, and 90% capacity retention, respectively. The discovery of the highly stable, lithiophilic NW decorated CP hosts is a promising route toward stable cycling LMBs and provides a new design motif for hosted Li metal anodes.</jats:p>

Topics
  • Deposition
  • impedance spectroscopy
  • Carbon
  • melt
  • Silicon
  • Lithium
  • Germanium