People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Geaney, Hugh
University of Limerick
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024Lithiophilic interlayer driven 'bottom-up' metal infilling in high current density Li-metal anodescitations
- 2024Strategies to Spatially Guide Li Deposition in Porous Electrodes for High-Performance Lithium Metal Batteries
- 2023Lithiophilic Nanowire Guided Li Deposition in Li Metal Batteriescitations
- 2023Solid–Electrolyte Interface Formation on Si Nanowires in Li-Ion Batteries: The Impact of Electrolyte Additivescitations
- 2023Cu Current Collector with Binder‐Free Lithiophilic Nanowire Coating for High Energy Density Lithium Metal Batteriescitations
- 2021Amorphization driven Na-alloying in Si<sub><i>x</i></sub>Ge<sub>1−<i>x</i></sub> alloy nanowires for Na-ion batteriescitations
- 2021Direct Growth of Si, Ge, and Si–Ge Heterostructure Nanowires Using Electroplated Zn: An Inexpensive Seeding Technique for Li‐Ion Alloying Anodescitations
- 20202D SnSe nanonetworks; growth and evaluation for Li-ion battery applications
- 2019Multimodal surface analyses of chemistry and structure of biominerals in rodent pineal gland concretionscitations
- 2018Copper Sulfide (Cu<i><sub>x</sub></i>S) Nanowire‐in‐Carbon Composites Formed from Direct Sulfurization of the Metal‐Organic Framework HKUST‐1 and Their Use as Li‐Ion Battery Cathodescitations
Places of action
Organizations | Location | People |
---|
article
Lithiophilic Nanowire Guided Li Deposition in Li Metal Batteries
Abstract
<jats:title>Abstract</jats:title><jats:p>Lithium (Li) metal batteries (LMBs) provide superior energy densities far beyond current Li‐ion batteries (LIBs) but practical applications are hindered by uncontrolled dendrite formation and the build‐up of dead Li in “hostless” Li metal anodes. To circumvent these issues, we created a 3D framework of a carbon paper (CP) substrate decorated with lithiophilic nanowires (silicon (Si), germanium (Ge), and SiGe alloy NWs) that provides a robust host for efficient stripping/plating of Li metal. The lithiophilic Li<jats:sub>22</jats:sub>Si<jats:sub>5</jats:sub>, Li<jats:sub>22</jats:sub>(Si<jats:sub>0.5</jats:sub>Ge<jats:sub>0.5</jats:sub>)<jats:sub>5,</jats:sub> and Li<jats:sub>22</jats:sub>Ge<jats:sub>5</jats:sub> formed during rapid Li melt infiltration prevented the formation of dead Li and dendrites. Li<jats:sub>22</jats:sub>Ge<jats:sub>5</jats:sub>/Li covered CP hosts delivered the best performance, with the lowest overpotentials of 40 mV (three times lower than pristine Li) when cycled at 1 mA cm<jats:sup>−2</jats:sup>/1 mAh cm<jats:sup>−2</jats:sup> for 1000 h and at 3 mA cm<jats:sup>−2</jats:sup>/3 mAh cm<jats:sup>−2</jats:sup> for 500 h. Ex situ analysis confirmed the ability of the lithiophilic Li<jats:sub>22</jats:sub>Ge<jats:sub>5</jats:sub> decorated samples to facilitate uniform Li deposition. When paired with sulfur, LiFePO<jats:sub>4,</jats:sub> and NMC811 cathodes, the CP‐LiGe/Li anodes delivered 200 cycles with 82%, 93%, and 90% capacity retention, respectively. The discovery of the highly stable, lithiophilic NW decorated CP hosts is a promising route toward stable cycling LMBs and provides a new design motif for hosted Li metal anodes.</jats:p>