Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kochetkova, Tatiana

  • Google
  • 5
  • 25
  • 89

University of Bern

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2023Microscale 3D printing and tuning of cellulose nanocrystals reinforced polymer nanocomposites19citations
  • 2022Microscale 3D Printing and Tuning of Cellulose Nanocrystals Reinforced Polymer Nanocomposites19citations
  • 2021Multiscale and multimodal X-ray analysis: quantifying phase orientation and morphology of mineralized turkey leg tendons6citations
  • 2021Combining polarized Raman spectroscopy and micropillar compression to study microscale structure-property relationships in mineralized tissues29citations
  • 2021A novel fiber-fretting test for tribological characterization of the fiber/matrix interface16citations

Places of action

Chart of shared publication
Siqueira, Gilberto
2 / 30 shared
Schwiedrzik, Jakob
4 / 35 shared
Michler, Johann
4 / 191 shared
Groetsch, Alexander
2 / 9 shared
Nyström, Gustav
2 / 24 shared
Stelzl, Samuel
2 / 2 shared
Pethö, Laszlo
2 / 20 shared
Nagel, Yannick
2 / 2 shared
Ovsianikov, Aleksandr
2 / 6 shared
Scherrer, Nadim C.
1 / 1 shared
Scherrer, Nadim
1 / 3 shared
Maurya, Anjani K.
2 / 6 shared
Dommann, Alex
1 / 14 shared
Neels, Antonia
2 / 39 shared
Parrilli, Annapaola
1 / 16 shared
Braun, Oliver
1 / 4 shared
Peruzzi, Cinzia
1 / 1 shared
Overbeck, Jan
1 / 7 shared
Zysset, Philippe
1 / 6 shared
Calame, Michel
1 / 12 shared
Hosemann, Peter
1 / 4 shared
Parkison, Darren
1 / 1 shared
Edwards, Thomas E. J.
1 / 12 shared
Kabel, Joey
1 / 3 shared
Hain, Caroline
1 / 6 shared
Chart of publication period
2023
2022
2021

Co-Authors (by relevance)

  • Siqueira, Gilberto
  • Schwiedrzik, Jakob
  • Michler, Johann
  • Groetsch, Alexander
  • Nyström, Gustav
  • Stelzl, Samuel
  • Pethö, Laszlo
  • Nagel, Yannick
  • Ovsianikov, Aleksandr
  • Scherrer, Nadim C.
  • Scherrer, Nadim
  • Maurya, Anjani K.
  • Dommann, Alex
  • Neels, Antonia
  • Parrilli, Annapaola
  • Braun, Oliver
  • Peruzzi, Cinzia
  • Overbeck, Jan
  • Zysset, Philippe
  • Calame, Michel
  • Hosemann, Peter
  • Parkison, Darren
  • Edwards, Thomas E. J.
  • Kabel, Joey
  • Hain, Caroline
OrganizationsLocationPeople

article

Microscale 3D printing and tuning of cellulose nanocrystals reinforced polymer nanocomposites

  • Siqueira, Gilberto
  • Kochetkova, Tatiana
  • Schwiedrzik, Jakob
  • Michler, Johann
  • Groetsch, Alexander
  • Nyström, Gustav
  • Stelzl, Samuel
  • Pethö, Laszlo
  • Nagel, Yannick
  • Ovsianikov, Aleksandr
  • Scherrer, Nadim C.
Abstract

The increasing demand for functional materials and an efficient use of sustainable resources makes the search for new material systems an ever growing endeavor. With this respect, architected (meta-)materials attract considerable interest. Their fabrication at the micro- and nanoscale, however, remains a challenge, especially for composites with highly different phases and unmodified reinforcement fillers. This study demonstrates that it is possible to create a non-cytotoxic nanocomposite ink reinforced by a sustainable phase, cellulose nanocrystals (CNCs), to print and tune complex 3D architectures using two-photon polymerization, thus, advancing the state of knowledge toward the microscale. Micro-compression, high-res scanning electron microscopy, (polarised) Raman spectroscopy, and composite modeling are used to study the structure-property relationships. A 100% stiffness increase is observed already at 4.5 wt% CNC while reaching a high photo-polymerization degree of ≈80% for both neat polymers and CNC-composites. Polarized Raman and the Halpin–Tsai composite-model suggest a random CNC orientation within the polymer matrix. The microscale approach can be used to tune arbitrary small scale CNC-reinforced polymer-composites with comparable feature sizes. The new insights pave the way for future applications where the 3D printing of small structures is essential to improve performances of tissue-scaffolds, extend bio-electronics applications or tailor microscale energy-absorption devices.

Topics
  • nanocomposite
  • impedance spectroscopy
  • polymer
  • phase
  • scanning electron microscopy
  • random
  • cellulose
  • Raman spectroscopy