People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wagner, Andreas
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Identification and Suppression of Point Defects in Bromide Perovskite Single Crystals Enabling Gamma-Ray Spectroscopycitations
- 2024Controlling Magneto‐Ionics by Defect Engineering Through Light Ion Implantationcitations
- 2024Controlling Magneto-Ionics by Defect Engineering Through Light Ion Implantationcitations
- 2024Positron annihilation analysis of nanopores and growth mechanism of oblique angle evaporated TiO2 and SiO2 thin films and multilayers
- 2023Ectodomain Shedding by ADAM17 Increases the Release of Soluble CD40 from Human Endothelial Cells under Pro-Inflammatory Conditions.citations
- 2022Ion Intercalation in Lanthanum Strontium Ferrite for Aqueous Electrochemical Energy Storage Devicescitations
- 2022Defect Nanostructure and its Impact on Magnetism of α-Cr2O3 thin filmscitations
- 2022Flexomagnetism and vertically graded Néel temperature of antiferromagnetic Cr2O3 thin films
- 2022Unravelling the Origin of Ultra‐Low Conductivity in SrTiO$_3$ Thin Films: Sr Vacancies and Ti on A‐Sites Cause Fermi Level Pinningcitations
- 2022Effect of Neutron Flux on an Irradiation-Induced Microstructure and Hardening of Reactor Pressure Vessel Steelscitations
- 2022Interface effect of Fe and Fe<sub>2</sub>O<sub>3</sub> on the distributions of ion induced defectscitations
- 2022Strongly enhanced growth of high-temperature superconducting films on an advanced metallic templatecitations
- 2021Mapping the structure of oxygen-doped wurtzite aluminum nitride coatings from ab initio random structure search and experimentscitations
- 2020Host-Guest Chemistry Meets Electrocatalysis:Cucurbit[6]uril on a Au Surface as a Hybrid System in CO 2 Reductioncitations
- 2020Host-Guest Chemistry Meets Electrocatalysis: Cucurbit[6]uril on a Au Surface as a Hybrid System in CO2 Reduction.
- 2018Voltage-controlled ON−OFF ferromagnetism at room temperature in a single metal oxide filmcitations
- 2018Voltage-controlled ON-OFF ferromagnetism at room temperature in a single metal oxide filmcitations
Places of action
Organizations | Location | People |
---|
article
Defect Nanostructure and its Impact on Magnetism of α-Cr2O3 thin films
Abstract
<jats:title>Abstract</jats:title><jats:p>Thin films of the magnetoelectric insulator <jats:bold>α</jats:bold>‐Cr<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> are technologically relevant for energy‐efficient magnetic memory devices controlled by electric fields. In contrast to single crystals, the quality of thin Cr<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> films is usually compromised by the presence of point defects and their agglomerations at grain boundaries, putting into question their application potential. Here, the impact of the defect nanostructure, including sparse small‐volume defects and their complexes is studied on the magnetic properties of Cr<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> thin films. By tuning the deposition temperature, the type, size, and relative concentration of defects is tailored, which is analyzed using the positron annihilation spectroscopy complemented with electron microscopy studies. The structural characterization is correlated with magnetotransport measurements and nitrogen‐vacancy microscopy of antiferromagnetic domain patterns. Defects pin antiferromagnetic domain walls and stabilize complex multidomain states with a domain size in the sub‐micrometer range. Despite their influence on the domain configuration, neither small open‐volume defects nor grain boundaries in Cr<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> thin films affect the Néel temperature in a broad range of deposition parameters. The results pave the way toward the realization of spin‐orbitronic devices where magnetic domain patterns can be tailored based on defect nanostructures without affecting their operation temperature.</jats:p>