Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Shields, Brendan

  • Google
  • 3
  • 26
  • 36

University of Basel

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2022Defect Nanostructure and its Impact on Magnetism of α-Cr2O3 thin films16citations
  • 2019(111)-oriented, single crystal diamond tips for nanoscale scanning probe imaging of out-of-plane magnetic fields20citations
  • 2017Purely antiferromagnetic magnetoelectric random access memorycitations

Places of action

Chart of shared publication
Kosub, Tobias
2 / 5 shared
Wagner, Andreas
1 / 17 shared
Makarov, Denys
2 / 26 shared
Pylypovskyi, Oleksandr V.
1 / 4 shared
Liedke, Maciej Oskar
2 / 9 shared
Fassbender, Jürgen
2 / 13 shared
Maletinsky, Patrick
3 / 9 shared
Hedrich, Natascha
1 / 3 shared
Attallah, Ahmed G.
1 / 3 shared
Makushko, Pavlo
1 / 4 shared
Ganss, Fabian
1 / 6 shared
Wagner, Kai
1 / 3 shared
Hirschmann, Eric
1 / 8 shared
Veremchuk, Igor
1 / 6 shared
Butterling, Maik
1 / 18 shared
Hübner, René
2 / 25 shared
Achard, Jocelyn
1 / 8 shared
Rohner, D.
1 / 1 shared
Happacher, J.
1 / 1 shared
Tschudin, Märta
1 / 2 shared
Reiser, P.
1 / 1 shared
Tallaire, A.
1 / 2 shared
Kopte, Martin
1 / 1 shared
Schmidt, Oliver G.
1 / 25 shared
Hühne, Ruben
1 / 15 shared
Appel, Patrick
1 / 2 shared
Chart of publication period
2022
2019
2017

Co-Authors (by relevance)

  • Kosub, Tobias
  • Wagner, Andreas
  • Makarov, Denys
  • Pylypovskyi, Oleksandr V.
  • Liedke, Maciej Oskar
  • Fassbender, Jürgen
  • Maletinsky, Patrick
  • Hedrich, Natascha
  • Attallah, Ahmed G.
  • Makushko, Pavlo
  • Ganss, Fabian
  • Wagner, Kai
  • Hirschmann, Eric
  • Veremchuk, Igor
  • Butterling, Maik
  • Hübner, René
  • Achard, Jocelyn
  • Rohner, D.
  • Happacher, J.
  • Tschudin, Märta
  • Reiser, P.
  • Tallaire, A.
  • Kopte, Martin
  • Schmidt, Oliver G.
  • Hühne, Ruben
  • Appel, Patrick
OrganizationsLocationPeople

article

Defect Nanostructure and its Impact on Magnetism of α-Cr2O3 thin films

  • Kosub, Tobias
  • Wagner, Andreas
  • Makarov, Denys
  • Pylypovskyi, Oleksandr V.
  • Liedke, Maciej Oskar
  • Fassbender, Jürgen
  • Maletinsky, Patrick
  • Hedrich, Natascha
  • Attallah, Ahmed G.
  • Makushko, Pavlo
  • Shields, Brendan
  • Ganss, Fabian
  • Wagner, Kai
  • Hirschmann, Eric
  • Veremchuk, Igor
  • Butterling, Maik
  • Hübner, René
Abstract

<jats:title>Abstract</jats:title><jats:p>Thin films of the magnetoelectric insulator <jats:bold>α</jats:bold>‐Cr<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> are technologically relevant for energy‐efficient magnetic memory devices controlled by electric fields. In contrast to single crystals, the quality of thin Cr<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> films is usually compromised by the presence of point defects and their agglomerations at grain boundaries, putting into question their application potential. Here, the impact of the defect nanostructure, including sparse small‐volume defects and their complexes is studied on the magnetic properties of Cr<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> thin films. By tuning the deposition temperature, the type, size, and relative concentration of defects is tailored, which is analyzed using the positron annihilation spectroscopy complemented with electron microscopy studies. The structural characterization is correlated with magnetotransport measurements and nitrogen‐vacancy microscopy of antiferromagnetic domain patterns. Defects pin antiferromagnetic domain walls and stabilize complex multidomain states with a domain size in the sub‐micrometer range. Despite their influence on the domain configuration, neither small open‐volume defects nor grain boundaries in Cr<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> thin films affect the Néel temperature in a broad range of deposition parameters. The results pave the way toward the realization of spin‐orbitronic devices where magnetic domain patterns can be tailored based on defect nanostructures without affecting their operation temperature.</jats:p>

Topics
  • Deposition
  • impedance spectroscopy
  • single crystal
  • grain
  • thin film
  • Nitrogen
  • positron annihilation lifetime spectroscopy
  • electron microscopy
  • vacancy
  • point defect